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Abstract 20 

The enhanced Charlson Comorbidity Index (eCCI) combines a person’s concurrent chronic 21 

medical conditions (comorbidities) in 39 categories into an index. We show that the average 22 

eCCI and the variance of eCCI of people of each age increase with age in de-identified electronic 23 

health records of 238,156 adults in low-income communities served by four health systems (2 in 24 

Chicago, 2 in NYC). The variance of eCCI approximates a power function of the mean eCCI. 25 

This quantitative relationship, not previously recognized, approximates Taylor's power law of 26 

fluctuation scaling. The quintiles of eCCI diverge with increasing age, consistent with an 27 

increasing variance. Within almost every age group, the frequency distribution of eCCI per 28 

individual is well approximated by a negative binomial distribution. This frequency distribution 29 

of eCCI per individual of a given age can account approximately for the relation of variance to 30 

mean across ages. The increase with age in the mean and the variance of eCCI, and the faster 31 

increase of the variance compared to the mean, show that aging brings more comorbidity on 32 

average and greater differences in comorbidity among individuals of more advanced ages. 33 

Clinical practice should recognize and respond to the greater differences in comorbidity among 34 

older people. 35 

  36 



Introduction 37 

According to the “World Report on Ageing and Health” (Beard et al. 2016, p. 2146), “ageing is 38 

… associated with an increased risk of a person having more than one disorder at the same time 39 

(multimorbidity).” Moreover, “the older the age group, the greater the variation found in 40 

cognition, physical and sensory function, and social engagement” (Santoni et al. 2015, p. 2). 41 

Hultsch et al. (2002) distinguished three types of variability in the reaction time of younger and 42 

older adults: “variability between persons (diversity), variability within persons across tasks 43 

(dispersion), and variability within persons across time (inconsistency).” In the present cross-44 

sectional study, each individual is assessed once only by chronological age and an enhanced 45 

Charlson Comorbidity Index (eCCI), an indicator of multimorbidity. This structure of the data 46 

gives no opportunity to measure inconsistency (which would require longitudinal data) or 47 

dispersion (which would require comparing different indices of multimorbidity). We analyze 48 

only the mean, variance (Hultsch’s “diversity”), quintiles, and frequency histogram of eCCI 49 

within groups of people of the same chronological age. The quantitative relationship between the 50 

average (or mean) and the variance of eCCI among adults as a function of age appears not to 51 

have been examined (e.g., Divo et al. 2014, Chen et al. 2022, Chen et al. 2023, Chowdhury et al. 52 

2023, Bensken et al. 2024). 53 

Before examining data, we predicted that the eCCI might obey a pattern widely observed in 54 

ecology and known as Taylor’s law (L. R. Taylor 1961, R. A. J. Taylor 2019). Taylor’s law 55 

predicts that the variance of eCCI should approximate some power of the mean of eCCI across 56 

the entire range of adult ages. The data here partly confirm and partly reject this predicted 57 

power-law relationship of variance to mean. 58 



Data and definitions 59 

Four health systems (HS 1, HS 2, HS 3, HS 4) in the United States measured the age and the 60 

enhanced Charlson Comorbidity Index (eCCI) (Charlson et al. 2025), based on electronic health 61 

records, of 238,156 adults in low-income communities. The eCCI used here was designed to 62 

anticipate risk of hospitalization and disability whereas several earlier versions of CCI were 63 

designed to anticipate risk of death (Charlson et al. 1994, Charlson et al. 2022, Charlson and 64 

Wells 2022; see also Ly et al. 2025 and the on-line calculator at 65 

https://www.mdcalc.com/calc/3917/charlson-comorbidity-index-cci). The eCCI of a patient was 66 

the sum of the points assigned in Table 1 to each chronic condition in the patient’s electronic 67 

medical record. These 39 conditions generate 239 = 549,755,813,888 or almost 550 billion 68 

possible combinations of conditions. The data analyzed here were accessed for research purposes 69 

on 2024-12-28. 70 

  71 

https://www.mdcalc.com/calc/3917/charlson-comorbidity-index-cci


Table 1. Chronic conditions and assigned points in the enhanced Charlson Comorbidity Index for 72 

Tipping Points Conditions and Weights (Charlson et al., 2025). 73 

Chronic Condition Comorbidity Weight 

Myocardial infarction 1 

Congestive heart failure 1 

Peripheral vascular disease or bypass 1 

Cerebrovascular disease or transient ischemic disease 1 

Hemiplegia 2 

Pulmonary disease/asthma 1 

Diabetes 1 

Diabetes with end organ damage 2 

Moderate to severe renal disease 2 

Mild liver disease 2 

Severe liver disease 3 

Gastric or peptic ulcer 1 

Cancer 2 

Rheumatic or connective tissue disease 1 

Hypertension 1 

Skin ulcers/cellulitis 2 

Depression 1 

Warfarin 1 

Inflammatory bowel disease 1 

Sickle cell disease 3 

Hemophilia 3 

Muscular dystrophy 2 

Cystic fibrosis 3 

Tay Sachs 3 

Cerebral palsy 2 

Uncontrolled seizures 3 

Dementia or Alzheimer’s 1 

Dialysis 2 

Developmental delay 2 

Mental retardation 2 

Down’s syndrome 3 

Bipolar disease 3 

Antipsychotics 3 

Drug or alcohol addiction 3 

Schizophrenia 3 

Autism 3 

Metastatic solid tumor 6 

HIV or AIDS 6 

Any transplant: Renal, heart, liver, bone marrow, or lung 6 



Age (in whole years plus days from the date of birth to the date on which eCCI was computed) 74 

was rounded to the nearest whole year. Single years of age with 100 or more people were 75 

selected for further analysis because age groups with few people (here, only the oldest elderly) 76 

were judged to give unreliable estimates of the mean and variance (Taylor et al., 1988).  77 

Two of the four health systems (HS 1 = NYC-a and HS 2 = NYC-b) were in New York City and 78 

two (HS 3 = Chicago-a and HS 4 = Chicago-b) were in Chicago, Illinois. In New York, the two 79 

health systems were Family Health Centers at NYU Langone and Community Healthcare 80 

Network. In Chicago, the two health systems were Erie Family Health Centers and Friend 81 

Health. In neither city is it publicly known which health system was “a” and which was “b.” The 82 

health systems and the individuals were fully de-identified for this analysis. 83 

RESULTS 84 

Age structure by HS 85 

The frequency histograms of the number of people by age in each HS (Figure 1) show visible 86 

differences among the HSs in the modal age. The modal age of HS 2 is by far the oldest. 87 

 88 

Figure 1 Number of people of each age with at least 100 people, by health system. Source: 89 

NumberOfPeopleEachAge4HSagemin100_20250131-122802.png 90 



 91 

 92 

To examine whether the differences in age distribution between and among HSs could have been 93 

due to sampling fluctuations from a common single underlying distribution, we used non-94 

parametric and parametric tests. 95 

The non-parametric Kruskal Wallis test (Matlab kruskalwallis) revealed statistically 96 

significant differences in the ranks of the age of individuals in all four HSs. HS 2 had the oldest 97 

age distribution, as Figure 1 suggests. Including only HSs 1, 3, 4, or only the pairs of HSs 1 and 98 

3, or HSs 1 and 4, or HSs 3 and 4, the Kruskal Wallis test again revealed statistically significant 99 

differences in the distributions of the age of individuals in different HSs. In all cases, p values 100 

(testing the null hypothesis of no difference in age distribution) were shown as 0, meaning that 101 

they fell below some small positive threshold for rounding to 0. 102 

The parametric test of a difference in mean ages between HSs was analysis of variance (Matlab 103 

anova1). The mean ages, shown in Table 2, are presumably asymptotically normally 104 

distributed by the central limit theorem even if the overall age distribution is not normally 105 



distributed. Once again, the p value was shown as 0. We again reject the null hypothesis that the 106 

age distributions of the four HSs were sampled from the same underlying distribution. 107 

Table 2 summarizes the distributions of ages and eCCI by HS. The mean eCCI and the variance 108 

of eCCI in HS 3 and HS 4 (in Chicago) were notably smaller than the mean and variance of HS 1 109 

and 2 (in New York), and HS 2 had notably higher mean age and mean eCCI than the three other 110 

HSs. The Discussion offers possible explanations of this difference between cities. 111 

Table 2. Summary statistics of age and eCCI in four health systems. 112 

Health system → 

Attribute ↓ 

1 NYC-a 2 NYC-b 3 Chicago-a 4 Chicago-b 

Number of people 39018 41400 91568 66170 

Minimum age years 18 18 19 19 

Median age years 39 52 39 40 

Maximum age years 106 108 112 110 

Mean age 42.3493 51.3300 41.6381 43.4239 

Standard dev. age 15.8985 17.7623 15.5392 16.4802 

Minimum eCCI 0 0 0 0 

Median eCCI 1 2 0 0 

Maximum eCCI 24 22 23 21 

Mean eCCI 1.4322 2.4736 1.0860 0.8847 

Standard dev. eCCI 2.2007 2.3270 1.7543 1.6422 

 113 

Mean and variance of eCCI by age group 114 

In each HS, for each age with 100 or more individuals, the mean eCCI and the variance of the 115 

eCCI of the individuals of that age generally increase with age (Figure 2). For each age, the area 116 

(not radius) of the circle for the variance of eCCI is proportional to the number of individuals of 117 

that age. The smallest circles at the extreme right of each panel show ages with 100 individuals. 118 



The mean eCCI by age is substantially higher in HS 1 and HS 2 (New York) than in HS 3 and 119 

HS 4 (Chicago), and the variance of eCCI is substantially higher in HS 1 and HS 2 than in HS 3 120 

and HS 4. Figure 2 shows clearly that the Poisson distribution (where variance equals mean) 121 

could not adequately describe the frequency distribution of eCCI by age group in any HS.  122 

 123 

Figure 2 The mean eCCI (blue circles) and the variance (red circles) of the eCCI of the 124 

individuals of each single year of age with 100 or more individuals, by HS. The area of each red 125 

circle is proportional to the number of individuals of the age corresponding to the abscissa of the 126 

center of the circle. Source: MeanCCIvsAgeVarCCIvsAge4HSagemin100_20250131-127 

122802.png 128 

 129 

 130 

 131 



Variance function 132 

The variance function of eCCI in a set of ages shows the variance of eCCI at each age group on 133 

the vertical axis as a function of the mean eCCI at each age on the horizontal axis. For each HS, 134 

Figure 3 displays the variance function of eCCI by age with at least 100 individuals (circles). 135 

The area of each circle is proportional to the number of individuals in the age group. The color of 136 

each circle shows the age of the individuals in the group. Figure 3 also displays two models for 137 

comparison with the eCCI data: Taylor’s law and the quadratic Taylor’s law. 138 

Taylor’s power law of fluctuation scaling 139 

Taylor’s law (TL) was discovered independently at least three times before L. R. Taylor (1961) 140 

brought it to wide attention. To describe TL, let 𝑣(𝑎) denote the sample variance of eCCI and 141 

𝑚(𝑎) the sample mean of eCCI at age a. These quantities are functions of the data, hence the 142 

qualification “sample.” By contrast with the sample moments, let 𝜎2(𝑎) and 𝜇(𝑎) denote the 143 

population variance and the population mean, respectively, of eCCI in a model of the variance 144 

function. 145 

Figure 3 The variance of the eCCI of the individuals of each age with 100 or more individuals as 146 

a function of the mean eCCI of each group (center of the circles) and two models: Taylor’s law 147 

(3) (black solid straight line) and the quadratic Taylor’s law (4) (blue dashed curved line). HS 1 148 

and HS 2 are in New York. HS 3 and HS 4 are in Chicago. The area of each circle is proportional 149 

to the number of individuals in the corresponding age. The color of each circle represents age 150 

from youngest (deep purple or blue) to oldest (yellow). Source: 151 

logVarCCIvslogMeanCCITLQTLall4HSagemin100_20250131-140652.png 152 



 153 

 154 

TL proposes that the variance function is a power law, meaning that the population variance is 155 

proportional (with coefficient c) to some power (denoted b here) of the population mean for a 156 

range of values of age a: 157 

(1) 𝜎2(𝑎) = 𝑐[𝜇(𝑎)]𝑏, 𝑐 > 0, for all ages a, 158 

and that the sample variance is approximately related to the sample mean by a relationship of the 159 

same form with an unspecified error model: 160 

(2) 𝑣(𝑎) ≈ 𝑐[𝑚(𝑎)]𝑏 , 𝑐 > 0, for all ages 𝑎. 161 

We say that c is the coefficient and b is the exponent of TL. TL (2) implies a linear relationship 162 

on log-log coordinates: 163 

(3) log10 𝑣(𝑎) ≈ log10 𝑐 + 𝑏 log10 𝑚(𝑎). 164 

The so-called quadratic Taylor’s Law (Taylor et al. 1978, p. 388, Eq. (14)) (QTL) generalizes TL 165 

to a quadratic relationship on log-log coordinates: 166 



(4) log10 𝑣(𝑎) = 𝑐1 + 𝑏1 log10 𝑚(𝑎) + 𝑏2[log10 𝑚(𝑎)]2, 167 

In each HS, to estimate the values of 𝑐, 𝑏, 𝑐1, 𝑏1, 𝑏2 from data for ages a with at least 100 168 

individuals, we fitted linear (3) and quadratic (4) regressions by least squares using Matlab 169 

function regress (black solid straight line and blue dashed curve in Figure 3).  170 

Table 3 gives the estimated exponent b and estimated coefficient c and their 95% confidence 171 

intervals (CIs). These confidence intervals are approximate because they assume the mean eCCI 172 

is known without sampling error. In HS 1 in New York, the exponent b does not differ 173 

significantly from 1, while b is significantly less than 1 in HS 3 in Chicago and is significantly 174 

greater than 1 in HS 3 and HS 4. The coefficient 𝑐 = 10log10 𝑐significantly exceeds 1 in all four 175 

HSs. 176 

 177 

Table 3. Least squares estimates of the coefficient c and the exponent b of sample Taylor’s law 178 

(3) and nominal 95% confidence intervals based on each age’s mean and variance of eCCI. For 179 

example, in HS 1, with mean eCCI 𝑚(𝑎) and variance 𝑣(𝑎) of eCCI in age a, the best 180 

approximating TL is log 𝑣(𝑎) ≈ 0.4171 + 1.0729 ⋅ log 𝑚(𝑎)  for all ages 𝑎. 181 

health exponent_b low_b high_b log10_c low log10_c high log10_c 

system __________ _______ _______ _____________ ________ _______ 

1 NYC-a 1.0729 0.95743 1.1884 0.4171 0.37991 0.45429 

2 NYC-b 1.2287 1.0861 1.3713 0.15558 0.096415 0.21475 

3 Chicago-a 0.92951 0.87851 0.98052 0.35842 0.3422 0.37464 

4 Chicago-b 1.108 1.0442 1.1718 0.46305 0.45062 0.47548 

 182 



Non-linearity of log variance as a function of log mean 183 

In Figure 3, on log-log coordinates, the variance functions of HS 1, HS 2, and HS 3 are not well 184 

approximated as straight lines on log-log coordinates, contrary to TL. Rather, the variance 185 

functions of HS 1 and HS 2 appear to be concave.  186 

Table 4 gives the OLS estimates and 95% confidence intervals of the parameters 𝑏2, 𝑏1, 𝑐1 in 187 

order from left to right. The estimated exponents 𝑏2 are significantly less than 0 because the 95% 188 

confidence interval lies entirely to the left of 0. By contrast, 𝑏2 for HS 4 does not differ 189 

significantly from 0.  190 

Table 5 gives the statistics of the TL and QTL regressions. 191 



 192 

Table 4. Parameter estimates and 95% confidence intervals for the parameters of the quadratic Taylor’s law (4). The substantially and 193 

significantly negative estimates of b2 for New York characterize a concave, non-linear variance function for eCCI. 194 

Health 

System b2 lo b2 hi b2 b1 lo b1 hi b1 

Intercept 

c1 lo c1 hi c1 

1 NYC-a -1.5587 -1.8352 -1.2823 1.4061 1.3173 1.495 0.5176 0.48978 0.54542 

2 NYC-b -2.3272 -3.3249 -1.3296 2.8083 2.1197 3.497 -0.03568 -0.13277 0.061417 

3 Chicago-a -0.71316 -0.9095 -0.51683 1.0527 1.0018 1.1036 0.4169 0.39678 0.43702 

4 Chicago-b -0.29897 -0.63715 0.039209 1.061 0.97871 1.1433 0.47221 0.45618 0.48824 

 195 

Table 5. Statistics of Taylor’s law regressions (3) in Table 3 and quadratic Taylor’s law regressions (4) in Table 4: coefficient of 196 

determination R2; probability p of the F-statistic of the null hypothesis of no relationship; residual sum of squares RSS. Fcompare is 197 

the F-statistic comparing the fit of the quadratic Taylor’s law with the fit of Taylor’s law; P is the probability of the null hypothesis of 198 

no improvement. The null hypothesis is rejected for all four health systems, even though for HS 4 the difference between TL and QTL 199 

is visually very small in Figure 3. 200 

Taylor’s law regressions (3) in Table 3 201 



Health System R2 pFstat2 MSE2 RSS2 

1 NYC-a 0.84766 5.09E-27 0.014956 0.9273 

2 NYC-b 0.80843 8.02E-27 0.011681 0.81766 

3 Chicago-a 0.95394 1.71E-44 0.003822 0.24463 

4 Chicago-b 0.94877 1.16E-43 0.002446 0.15898 

 202 

quadratic Taylor’s law regressions (4) in Table 4 203 

Health System R2 pFstat2 MSE2 RSS2 Fcompare P 

1 NYC-a 0.9506 1.44E-40 0.00493 0.30071 127.1 0 

2 NYC-b 0.85419 1.41E-29 0.009019 0.62233 21.656 0 

3 Chicago-a 0.97492 3.80E-51 0.002115 0.13322 52.688 0 

4 Chicago-b 0.95115 1.11E-42 0.002369 0.1516 3.1191 4.72E-06 

204 



For each HS separately, we tested whether QTL described the data significantly better than TL 205 

by an F-test: 206 

(5) 𝐹 =

𝑅𝑆𝑆𝑇𝐿−𝑅𝑆𝑆𝑄𝑇𝐿

𝑑𝑓𝑇𝐿−𝑑𝑓𝑄𝑇𝐿
𝑅𝑆𝑆𝑄𝑇𝐿

𝑑𝑓𝑄𝑇𝐿

 207 

where 𝑅𝑆𝑆𝑇𝐿 , 𝑅𝑆𝑆𝑄𝑇𝐿 are the residual sums of squares of TL and QTL, respectively, and 208 

𝑑𝑓𝑇𝐿 , 𝑑𝑓𝑄𝑇𝐿 are the corresponding degrees of freedom. Then, if fcdf is the cumulative distribution 209 

function of the F distribution with degrees of freedom 𝑑𝑓𝑇𝐿 , 𝑑𝑓𝑄𝑇𝐿, we calculate 210 

(6) 𝑃 = 1 − 𝑓𝑐𝑑𝑓(𝐹, 𝑑𝑓𝑇𝐿 , 𝑑𝑓𝑄𝑇𝐿). 211 

If P is larger than a critical value, e.g., 0.05, then QTL is not a significantly better description 212 

of the data than TL. If P is smaller than a critical value, then QTL is a significant 213 

improvement over TL. The last two columns of Table 5, Fcompare and P, strongly confirm 214 

QTL describes the variance functions of all four HSs better than TL, and are significantly 215 

concave for HS 1, 2, and 3. 216 

Quantiles of eCCI by age in each health system 217 

The rising trend of the variances of eCCI in Figure 2 indicates increasing scatter (“diversity” in 218 

the sense of Hultsch et al. 2002) of eCCI with increasing age. To quantify the increasing scatter 219 

further, we display the quantiles of the distribution of eCCI at each age in this section. In the next 220 

section, we refine the analysis by fitting the frequency distributions of eCCI at each age to the 221 

negative binomial distribution. 222 

The quintiles of eCCI for age a are those four values of eCCI such that 1/5, 2/5, 3/5, and 4/5 of 223 

the people of age a have eCCI less than or equal to those values. These quintiles divide the 224 



ranked list of eCCIs into five equal (or nearly equal) portions. The increases with age in the 225 

variance of eCCI suggest that the upper quintiles of the distribution of eCCI should rise more 226 

rapidly with age than the lower quintiles because the distribution of eCCI should spread out more 227 

with increasing age. Figure 4 confirms this suggestion for each HS and for each age with 100 or 228 

more people. The four quintiles of eCCI diverge with increasing age. Figure 4 also shows that 229 

the upper quintiles and the entire distribution of eCCI in middle and upper ages are notably lower 230 

in HS 4 than in the other three HSs, for reasons yet to be determined. 231 

 232 

Figure 4 Four quintiles of eCCI as a function of age, for ages with 100 or more people in that 233 

health system. Source: QuantilesCCIbyAgeForEachHS_20250128-173406.png 234 

 235 

 236 



Frequency histogram of eCCI within each age group 237 

The frequency histogram of eCCI within an age group in a HS shows how many people of that 238 

age and HS had eCCI equal to 0, how many had eCCI equal to 1, how many had eCCI equal to 2, 239 

and so on. To give statistically credible information about the relative frequency of each value of 240 

eCCI by age group, we devised 16 age groups containing four years of age each: 19-22 years 241 

(that is, from age 20 minus one up to and including 20 plus two), 23-26 (that is, from age 24 242 

minus one up to and including 24 plus two), and so on up to 79-82 (that is, from age 80 minus 243 

one up to and including 80 plus two). We label each of these age groups by the age in the group 244 

that is divisible by 4, namely, 20, 24, 28, …, 76, 80. Figure 5 shows the number of people in 245 

each age group in each HS. As in Figure 1, the larger proportion of people at older ages in HS 2 246 

is visible. 247 

  248 



Figure 5 Number of people in each 4-year age group in each health system. Source: 249 

NPeopleByAge16GroupsHealthSystem_20250115-184027.png 250 

 251 

 252 

 253 

For all 64 of these age groups (16 age groups for each of 4 HSs), the variance of eCCI exceeded 254 

the mean eCCI. (When groups of 100 people or more in individual years of age were used to 255 

compare the mean and variance of eCCI, a handful of the youngest and extremely oldest single-256 

year age groups had a variance of eCCI less than the mean eCCI. Evidently, these few exceptions 257 

resulted from sampling fluctuations.) 258 

The negative binomial distribution is a classical parametric model of over-dispersed integer-259 

valued nonnegative random variables. Figures 6-9 show the observed counts of people in HS 1-4, 260 

respectively, who have each eCCI and the expected counts (green line) from a negative binomial 261 

distribution fitted to the empirical probability density function (which is just the frequency 262 

histogram divided by the sum of all counts in the histogram). The agreement is generally 263 



excellent. Some deviations arise at the largest values of eCCI where fewer people are observed. 264 

Because the vertical axis (number of people) is on a logarithmic scale, the (rare) zero counts are 265 

omitted entirely. 266 

  267 



Figure 6 For HS 1, the number of people in each 4-year age group (vertical axis of black ×) who 268 

have each value of eCCI (horizontal axis of black ×), and the fitted negative binomial 269 

distribution (green line). The vertical axis for number of people is on a logarithmic scale. Source: 270 

PeopleVsCCIbyAgeHS1_20250115-160715.png271 

 272 

Figure 7 For HS 2, the number of people in each 4-year age group (vertical axis of black ×) who 273 

have each value of eCCI (horizontal axis of black ×), and the fitted negative binomial 274 

distribution (green line). The sample variance differs most from the variance predicted by the 275 

negative binomial distribution in the age groups 36-54. The other health systems do not show 276 

similar deviations in these age groups. Source: PeopleVsCCIbyAgeHS2_20250115-160715.png 277 



 278 

Figure 8 For HS 3, the number of people in each 4-year age group (vertical axis of black ×) who 279 

have each value of eCCI (horizontal axis of black ×), and the fitted negative binomial 280 

distribution (green line). Source: PeopleVsCCIbyAgeHS3_20250115-160715.png 281 

 282 

 283 



Figure 9 For HS 4, the number of people in each 4-year age group (vertical axis of black ×) who 284 

have each value of eCCI (horizontal axis of black ×), and the fitted negative binomial 285 

distribution (green line). Source: PeopleVsCCIbyAgeHS4_20250115-160715.png 286 

 287 

 288 

Negative binomial distribution 289 

The negative binomial distribution can be parameterized in various ways. The probability density 290 

function of the negative binomial distribution in Matlab 291 

(https://www.mathworks.com/help/stats/nbinpdf.html), which we used for these computations, 292 

is: for 0 < 𝑝 < 1, 𝑟 > 0 (r may or may not be an integer), 293 

(7) Pr(𝑒𝐶𝐶𝐼 = 𝑥) =  (
Γ(𝑟+𝑥)

Γ(𝑟)Γ(1+𝑥)
) 𝑝𝑟(1 − 𝑝)𝑥,    𝑥 = 0, 1, 2, 3, … 294 

If eCCI is negative binomially distributed as in (7), the expectation or population mean of eCCI 295 

is 296 

https://www.mathworks.com/help/stats/nbinpdf.html


(8) 𝐸(𝑒𝐶𝐶𝐼) =
𝑟(1−𝑝)

𝑝
 297 

and the population variance of eCCI is  298 

(9) 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) =
𝑟(1−𝑝)

𝑝2    299 

(https://www.mathworks.com/help/stats/nbinstat.html). Two possible variance functions for the 300 

negative binomial distribution are 301 

(10) 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) = (
1

𝑝
) 𝐸(𝑒𝐶𝐶𝐼) if p is constant and only r varies; 302 

and 303 

(11) 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) = 𝐸(𝑒𝐶𝐶𝐼) + (
1

𝑟
) [𝐸(𝑒𝐶𝐶𝐼)]2 if r is constant and only p varies. 304 

Both (10) and (11) imply 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) > 𝐸(𝑒𝐶𝐶𝐼). 305 

If (10) holds for every age group a with the same value of p for all age groups and only r varies, 306 

then (10) is identical to TL (1) with 𝑐 = 1/𝑝 and 𝑏 = 1. In the limit as p approaches 1, the 307 

variance function (10) approaches 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) = 𝐸(𝑒𝐶𝐶𝐼), which is the variance function of the 308 

Poisson distribution, where variance equals mean. If p varies notably with age a, then (1) and 309 

(10) are not consistent. 310 

If only p varies and r is constant, then the variance is a quadratic function (11) of the mean. In 311 

the limit as r approaches infinity, the variance function (11) again approaches 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) =312 

𝐸(𝑒𝐶𝐶𝐼), the variance function of the Poisson distribution. In the limit as r approaches 0, the 313 

second term in (11) dominates the first and (11) is asymptotic to TL (1) with 𝑐 = 1/𝑟 and 𝑏 = 2. 314 

For fixed finite r, when only p varies, 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) is a convex increasing function (11) of 315 

𝐸(𝑒𝐶𝐶𝐼), not consistent with TL (1). 316 

https://www.mathworks.com/help/stats/nbinstat.html


Figure 10 plots the estimated negative binomial parameters 𝑟, 𝑝 as a function of age group a for 317 

each HS. In all four HSs, with increasing age, r changes more than p. The major trend is that r 318 

decreases from age group 20 to 28 and increases from age group 28 onward (except in HS 4 319 

above age 64). In HS 1 and HS 2 (New York), the estimated r (blue line, blue x) notably exceeds 320 

the estimated p (orange line, orange +). As age increases, in HSs 1, 2, and 3, p decreases slightly 321 

at the earlier ages and then smoothly levels off, while in HS 4, p falls over the entire range of 322 

ages (apart from a slight rise between ages 40 and 48). 323 

The trends over age in the estimated parameters of the negative binomial distribution of CCI 324 

account qualitatively for the occurrence of Taylor’s law with exponent near or less than 𝑏 = 1 in 325 

these data. Using the estimated parameter values 𝑟, 𝑝, Figure 11 plots the population variance 326 

𝑉𝑎𝑟(𝐶𝐶𝐼) = 𝑟(1 − 𝑝) 𝑝2⁄  as a function of the predicted mean 𝐸(𝐶𝐶𝐼) = 𝑟(1 − 𝑝) 𝑝⁄  for each 327 

age group in each HS (blue x marks) and a (black) curve, a power function corresponding to 328 

Taylor’s law, fitted by least squares to the 16 values of (𝑟(1 − 𝑝)/𝑝, 𝑟(1 − 𝑝)/𝑝2) for the 16 329 

age groups in each HS. Only for HS 2 is 𝑏 > 1 significantly. In HS 1 and 3, 𝑏 < 1 significantly, 330 

and b is not significantly different from one in HS 4. 331 

For HS 1 (New York) and HS 3 (Chicago) in Figure 11, 𝑉𝑎𝑟(𝐶𝐶𝐼) increases as a concave 332 

function of the mean 𝐸(𝐶𝐶𝐼) compared to the fitted power-law curve. This observation is 333 

consistent with the curved path of the circles in Figure 3’s top left panel for HS 1 (New York). 334 

Likewise, New York’s HS 2 gives concordant M-shaped circles for 𝑉𝑎𝑟(𝐶𝐶𝐼) in Figure 3 and 335 

blue x markers in Figure 10, top right panels, compared to the fitted power-law curves. Similarly, 336 

the panels for Chicago in the bottom row of Figure 10, like the panels for Chicago in the bottom 337 

row of Figure 3, roughly support Taylor’s power law variance function. 338 

 339 



Figure 10 Estimates of the negative binomial parameters 𝑟, 𝑝 as a function of age group a for 340 

each health system. Source: NegativeBinomialParameters_20250115-185504.png 341 

 342 

  343 



Figure 11 The variance 𝑉𝑎𝑟(𝑒𝐶𝐶𝐼) = 𝑟(1 − 𝑝) 𝑝2⁄  of a negative binomial distribution of 344 

individual eCCI as a function of the mean 𝐸(𝐶𝐶𝐼) = 𝑟(1 − 𝑝)/𝑝 for each age group in each 345 

health system (blue x marks) and a (black) curve, corresponding to a fitted Taylor’s power law 346 

(1). Source: NegativeBinomialPredictedTLbyHS_20250117-115016.png 347 

 348 

 349 

DISCUSSION 350 

Summary and interpretation of main results 351 

We show that, in four health systems (HSs), two in New York and two in Chicago, the variation 352 

in the enhanced Charlson Comorbidity Index (eCCI) (defined by Charlson et al., 2025) among 353 

people of a given age increases with age, apart from random variation in small samples. The 354 

increasing variation is systematically related to an increase with age in the average eCCI, in 355 

qualitative agreement with Taylor’s power law of fluctuation scaling or the quadratic Taylor’s 356 



law. The quintiles of eCCI diverge increasingly with age, again revealing increasing scatter in 357 

eCCI of individuals of each age. The frequency histogram of eCCI within age groups is generally 358 

well described by a negative binomial distribution. The parameters of the negative binomial 359 

distribution of different age groups account approximately for the appearance of Taylor’s law or 360 

the quadratic Taylor’s law in these four HSs. The underlying mechanisms of the negative 361 

binomial distribution and of Taylor’s law or its quadratic generalization remain to be determined. 362 

The differences among the four HSs could be due to: 363 

• differences in the patient population, 364 

• differences in the environment of the different HSs, 365 

• differences in the coding practices of different HSs in different cities and states, including 366 

differences among clinicians or health insurance companies in their propensity to add 367 

comorbid conditions to records of ageing patients who already have multiple comorbid 368 

conditions, 369 

• differences in the survival of older adults with larger eCCI if the survivors to older ages 370 

experienced high values of eCCI less often than those who died, 371 

• or to interactions of these and other unnamed factors. 372 

In every HS reported here, in every 4-year age group, the variance of eCCI substantially exceeds 373 

the mean eCCI. This observation rejects a Poisson model of variation in eCCI, in which the 374 

variance of eCCI equals the mean of eCCI. Poisson variation would arise if every cause of an 375 

increase by one unit in eCCI were independent of every other cause and had an equal probability 376 

of causing an increase in eCCI. The medical conditions that are counted in eCCI are known not 377 

to be independent and not to be of identical probability. The sample has more variation in eCCI 378 



than the Poisson model can describe, suggesting that the factors that contribute to eCCI are 379 

positively associated, i.e., they tend to vary together. Moreover, these associations may change 380 

with age. 381 

The clear finding that the variance and the mean of eCCI rise with age means that aging brings 382 

increasing comorbidity (known already) and increasing diversity of comorbidity (described 383 

here). The upper quantiles of the distribution of eCCI at each age rise more rapidly than the 384 

lower quantiles and the mean of eCCI. Increasing age brings more comorbidities than would be 385 

predicted from the increase in the mean of eCCI alone. Clinical practice should take account of 386 

the increasing diversity of comorbidity. 387 

Interpreting the negative binomial distribution 388 

The negative binomial distribution describes very well the frequency distribution (histogram) of 389 

eCCI within nearly every 4-year age group in all 4 health systems. The negative binomial 390 

distribution has at least three well known interpretations or models (Bailey 1964; Grimmett and 391 

Stirzaker 2001): heterogeneity, contagion, and sampling. 392 

Heterogeneity: the negative binomial is a mixture of Poisson distributions with gamma-393 

distributed means. In greater detail, if an age group contains subgroups, and each subgroup has a 394 

Poisson distribution of eCCI, and the mean eCCIs of the different subgroups vary according to a 395 

gamma distribution, then the whole age group has a negative binomial distribution of eCCI. 396 

The contagion model’s key idea is that the more chronic conditions a person has, at any age, the 397 

higher the risk that the person will acquire an additional chronic condition. This hypothetical 398 

“contagion” (in a statistical sense, not related specifically to infectious diseases) among 399 

conditions could be tested empirically with adequate longitudinal data. 400 



Sampling: This interpretation is possible when the parameter r is a positive whole number. 401 

Suppose that, over time, each person experiences a succession of independent random trials. 402 

Suppose a person’s trial “succeeds” with probability 𝑝 and “fails” with probability 1 − 𝑝. To 403 

achieve r successes, a person has to experience a variable number x of failures since there is a 404 

fixed positive probability 1 − 𝑝 of failure at every trial. The number of extra trials x a person 405 

experiences to reach r successes is a random quantity that obeys the negative binomial 406 

distribution (7). Here the number of failures x corresponds to eCCI, the number of comorbid 407 

conditions a person acquires until achieving r “successes.” 408 

The available data are insufficient to select among these possible mechanisms that lead to the 409 

negative binomial distribution. The multiple possibilities suggest questions for future research. 410 

Future research 411 

For clinical applications, to identify risk groups and opportunities for patient education and 412 

intervention, it would be highly desirable to repeat this analysis after stratifying each age group 413 

by sex, marital status, education, behavior (smoking, drug use, alcohol use, exercise, sleep, diet, 414 

relationships), socio-economic status, environmental hazards, and perhaps other characteristics. 415 

The auxiliary variables associated with individuals of a given age with high and low eCCI may 416 

offer clues to possible preventive interventions or behavioral changes. 417 

The 39 conditions included in the enhanced eCCI generate 239 ≈ 5.5 × 1011 (almost 550 billion) 418 

possible combinations of conditions. Identifying each patient’s combination of conditions would 419 

make it possible to examine the marginal frequency of each condition and the associations, 420 

positive and negative, among conditions. 421 



The present analysis is cross-sectional, comparing individuals who are observed once only at 422 

different ages. Longitudinal records of medical history for the oldest age groups would make it 423 

possible to calculate the eCCI retrospectively for those individuals, say, at each age 10, 20, 30, 424 

… years earlier, and to compare the trajectories (frequency histogram, mean, variance, and 425 

relation of variance to mean) over increasing age of individuals at an advanced age who have 426 

low eCCI with the trajectories of individuals who have high eCCI. Longitudinal records of 427 

medical history would also make it possible to evaluate the influence of selective or differential 428 

survival on the distribution of eCCI among the living, and easier to discriminate among 429 

alternative mechanisms that lead to the observed negative binomial distribution of eCCI within 430 

age groups. 431 
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