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Abstract 

Background – Although air pollution has been associated with worse cognitive performance, 

whether these relationships differ by cognitive domain, and which sources of air pollution are 

particularly detrimental for cognition remains understudied. This study examined associations 

between 8-10 years of exposure to air pollutants (NO2, total PM2.5, and PM2.5 from different 

emission sources) and cognitive scores across three cognitive domains in older adults. 

Methods – We used data from the 2018 Harmonized Cognitive Assessment Protocol (HCAP) 

sub-study of the English Longitudinal Study of Ageing (N=1,127). Outdoor concentrations of 

each pollutant for all HCAP respondents’ residences were estimated for 2008/10-2017 and 

summarised using means and group-based trajectory modelling. Linear regression models were 

used to assess the relationships of long-term air pollution exposure with memory, executive 

function, language, and global cognitive function after adjustment for key individual and 

neighbourhood-level confounders. 

Results – The associations between outdoor air pollution trajectories and cognition are mostly 

inverted j-shaped, suggesting that respondents exposed to the highest residential levels of NO2 

and total PM2.5 had worse performance for global cognition [β=-0.241; 95%CI=(-0.46,-0.02) 

and β=-0.334; 95%CI=(-0.55,-0.12) respectively] than those exposed to average levels of 

pollution. Similar associations were also found for executive function and memory (PM2.5 

only), whereas more compelling dose-response evidence was found for language. Higher 

emissions from industry and residential combustion as well as biofuel, coal, oil and natural gas 

combustion were associated with worse language scores. 



Conclusions – Older people’s cognitive performance might benefit from continued efforts to 

reduce air pollution, particularly where levels are the highest. 
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Introduction 

Ageing-related decline in cognitive function contributes to reductions in life expectancy, 

quality of life, and social participation [1-5]. With a rapidly ageing global population, 

identifying drivers of heterogeneity in cognitive function during ageing is therefore a pressing 

public health issue. Among the modifiable factors associated with cognitive health, a growing 

body of evidence supports the link between exposure to outdoor air pollutants and worse 

cognitive function [6-10]. In their report, Livingston and colleagues estimate the population-

attributed fraction for air pollution for dementia at 2.6%, higher than the one calculated for 

hypertension and physical inactivity [11]. In particular, exposure to nitrogen dioxide (NO2) and 

particulate matter with aerodynamic diameters less than 2·5 µm (PM2.5) are most implicated 

for cognitive health [8, 9, 12]. Although the biological pathways underlying associations 

between air pollution and cognitive function are not yet fully understood and specific air 

pollutants may affect the brain and cognitive health differently, it is hypothesised that air 

pollution adversely affects both the central nervous system and the circulatory system, leading 

to increased cognitive decline and risk of dementia [13, 14]. It is also understood that there 

may be direct impacts to the brain since the smallest particles can travel to the brain through 

the olfactory bulb and cross the blood-brain barrier[15]. 

Several knowledge gaps in this area of research remain. First, despite evidence that associations 

between air pollution and cognitive function may differ by cognitive domain, few studies have 

investigated the links between air pollution and specific cognitive domains, with findings 

inconsistent in direction and magnitude depending on the type of pollutant and the cognitive 

domain considered [16-23]. For instance, Gatto et al. [19] reported no association between 

exposure to NO2 and executive function but found increasing exposure to PM2.5 associated with 

lower verbal learning among healthy residents living in the Los Angeles, California area of the 

United States (US). Tonne et al [20], however, found that increased exposure to PM2.5 was 



associated with reduced reasoning ability among Whitehall II study residents of Greater 

London, United Kingdom (UK). Using the UK Biobank, Cullen et al [21] found that exposure 

to NO2 was associated with better reasoning scores but lower visuospatial memory. Second, 

PM2.5 originates from many sources in the environment including traffic, coal-fired power 

plants, and agricultural emissions, and each source can emit PM2.5 with distinct physical and 

chemical characteristics. For example, components such as black carbon (BC) and nitrates are 

more common in PM2.5 from traffic-related sources, whereas ammonium is often in PM2.5 from 

agriculture. However, to date, few studies have examined associations between specific 

constituents of PM2.5 and cognitive function, with most focusing on BC and traffic-related 

exposures [23-26]. The only study so far that has considered broader sources of PM2.5 

emissions has focused on dementia, and found that PM2.5 from agriculture and wildfires were 

particularly detrimental for incident dementia in the US [27]. Finally, although it is common 

practice to examine the association between air pollutants and cognitive function by taking the 

mean concentration of air pollutants over the study period, this approach might not account for 

different patterns and levels of exposures to air pollutants over time. 

In this study, we attempt to fill these gaps in knowledge by examining associations of long-

term exposure to NO2, total PM2.5, and source-specific PM2.5 measured over a period of up to 

10-years with cognitive function. Cognitive function is assessed using the Harmonised 

Cognitive Assessment Protocol (HCAP), a detailed set of neuropsychological assessments 

designed to measure key cognitive domains affected by cognitive aging (including memory, 

executive function, and language) and facilitate cross-national comparisons between national 

cohort studies of ageing. We examine long-term exposure to air pollution using both mean air 

pollution concentration during the study period, as well as by classifying participants into 10-

year trajectories of air pollution concentrations. 



Method 

Study Population 

Our study population was adults aged 65 years and over living in private households in England 

in 2018. We used data from wave 4 (2008-09) of the English Longitudinal Study of Ageing 

(ELSA) and wave 1 (2018) of the Harmonized Cognitive Assessment Protocol (HCAP) sub-

study of ELSA (ELSA-HCAP). ELSA is a nationally representative cohort study of adults aged 

50 years and above, living in private households in England [28]. ELSA started in 2002 and 

data are collected biennially using face-to-face personal interviews and self-completion 

questionnaires; more than 18,000 people have taken part in the study since its inception. 

Refreshment samples of new participants have been recruited regularly to maintain the age 

profile and ensure that the study remains representative of the English population aged 50 years 

and over.  

The HCAP was implemented in a subset of ELSA participants to examine mild cognitive 

impairment and dementia using more detailed assessments of cognitive function than possible 

in the main interviews of ELSA [29]. A probability sample of ELSA participants who did not 

use a proxy for their core ELSA interview, were aged 65 years or older in January 2018, and 

had completed an ELSA interview in person at either wave 8 (2016–17) or wave 7 (2014–15) 

were invited to participate in ELSA-HCAP interviews that took place between January and 

April 2018. To ensure adequate sample sizes of participants with dementia, participants with 

low cognitive scores (assessed using telephone interview cognitive screening and/or 

Alzheimer’s disease or dementia previously self-reported in ELSA interviews) were 

oversampled. Of the 1,684 eligible respondents invited to the study, 1,272 completed the face-

to-face HCAP interview (response rate 76%). More details of ELSA and ELSA-HCAP surveys’ 

sampling frame, methodology, and questionnaires can be found at www.elsa-project.ac.uk. 

ELSA was approved by the London Multicentre Research Ethics Committee (MREC/01/2/91) 

http://www.elsa-project.ac.uk/


and the ELSA-HCAP sub-study received ethical approval from the South Central-Berkshire 

National Health Services (NHS) Research Ethics Committee. Informed consent was obtained 

from all participants or their guardians. All ELSA data are available through the UK Data 

Service (SN 5050 and 8502).  

In the present study, demographic and socioeconomic characteristics of ELSA-HCAP 

participants were drawn from ELSA core interviews. Though most ELSA-HCAP participants 

first participated in ELSA during wave 1 (2002), 257 (20%) were first interviewed in wave 4 

(2008-09); to retain these individuals, we therefore considered ELSA wave 4 (2008-09) as the 

baseline wave in the analyses.  

Exposure Assessment 

Environmental exposome data are drawn from the Gateway to Global Aging Data 

(https://exposome.g2aging.org). Full details on the environmental exposome data, their spatial 

and temporal resolutions, and links to the original source information are presented by D’Souza 

and colleagues [30] and can be found at the Gateway exposome site. Briefly, spatiotemporal 

prediction models were used to estimate annual average estimates of total NO₂ concentrations 

and PM2.5 levels for each ELSA-HCAP participant based on their residential addresses. 

Estimates for NO2 were predicted at a resolution of 50m x 50m from 2005 to 2019 and were 

generated using models that included remote sensing from the Ozone Monitoring Instrument, 

road networks, built environments, and meteorological variables [31]. Annual mean 

concentrations of total PM2.5 were available at a 1 km2 resolution from 2010 to 2019 and were 

created using the Data Integration Model for Air Quality that combines information from 

satellite remote sensing and chemical transport models, meteorological information, 

correlations over space, and ground-based monitoring data [32]. As ELSA wave 4 (2008-09) 

was the baseline wave for this study, we considered air pollution data recorded between 2008 

and 2017 for NO2 and between 2010 and 2017 for PM2.5. 

https://exposome.g2aging.org/


Source-specific PM2.5 concentrations were derived by multiplying the yearly average PM2.5 

concentration at each address by local fractions of PM2.5 attributable to different emission 

sources. These fractions were generated at a resolution of 0.5° × 0.625° (~55km × ~70km) by 

serially running an atmospheric chemistry-transport model (GEOS-Chem) with all sources but 

one to isolate the unique contribution of that source to the total PM2.5 mixture [33]. Although 

these emission-specific fractions were generated using data from 2017, prior evidence suggests 

that these estimates are representative for previous years as well [27]. In this study, we focused 

on agriculture, energy production, industry, residential combustion, and road traffic as sector-

specific sources of PM2.5. Altogether, these sources accounted for ~61% of the total PM2.5 

emissions. We also considered fuel-specific sources with primary emissions including solid 

biofuel, coal, and liquid oil and natural gas combustion. These sources and the percentage of 

total PM2.5 they account for are described in Supplementary Table S1.  

Cognitive function 

The HCAP battery was designed to assess key cognitive domains affected by cognitive ageing, 

including memory, executive function, and language. In ELSA-HCAP, respondents were 

administered a range of cognitive tests adapted from the original battery by Langa and 

colleagues [34]; these included well-established neurocognitive assessments such as the “East 

Boston Memory Test” and the “Wechsler Memory Scale”, immediate and delayed recall, 

backwards counting tasks, and shape drawing. Details of cognitive testing protocols and tests 

used (with relevant references) are available in the ELSA-HCAP Technical Report [35] and its 

profile description [29]. Cognitive scores for each cognitive domain were produced using the 

procedure described by Gross et al [36]. These scores have been shown to have high reliability 

and be useful for population-based research on cognition. Scores for executive function, 

language, and memory were derived using factor analysis of cognitive tests relevant to each 

domain, with a similar procedure also used for general cognition. The derived cognitive scores 



were normally distributed (Supplementary Figure S1); to facilitate their interpretation, scores 

were standardised using the mean and standard deviation of the analytic sample, with positive 

scores representing above-the-average scores. 

Covariates 

Potential confounders of the relationship between long-term exposure to outdoor air pollution 

and cognitive function were drawn from ELSA wave 4 (2008-09) and included age, sex, age at 

which participants completed their highest education qualification, and total wealth, defined as 

the sum of financial, physical, and housing wealth (divided into quintiles). We also included a 

summary measure of cognitive function (based on tests of immediate and delayed recall and 

verbal fluency administered in ELSA wave 4). Based on each participant’s residential location, 

we also included urbanicity, measured according to the 2001 Census Urban/Rural Indicator, 

and neighbourhood socioeconomic status (in quintiles) measured using the 2007 Index of 

Multiple Deprivation that accounts for area dimensions including income, employment, living 

environment, and crime [37].  

Statistical Analysis 

We adopted two strategies to summarise long-term exposure to air pollution. First, for each of 

the air pollutants (NO2, total PM2.5, and source-specific PM2.5), we calculated mean-centred 

average concentrations and interquartile range (IQR) over the period under study (2008-2017 

for NO2; 2010-2017 for PM2.5), in line with previous literature on long-term exposure to 

outdoor air pollution. Second, we applied group-based trajectory modelling [38] to investigate 

if there were distinctive trajectory patterns of exposure to different air pollutants over time and 

understand how these trajectories relate to cognitive function.  

A group-based trajectory modelling framework takes into account the dependency of 

observations and assumes a mixture of subpopulations with different individual trajectories 



within the target population and identifies distinctive groups within which individuals share 

similar trajectories [39, 40]. Both linear and nonlinear trajectories can be captured by 

introducing higher-order polynomial growth parameters into the model. For each subject, the 

model provides the probability of belonging to each of the identified trajectory groups and 

assigns the subject to the trajectory group based on the highest probability. To determine the 

optimal number of trajectory groups within our sample, we fitted unconditional group-based 

trajectory models using up to ten years of data (2008-2017) on outdoor air pollution, with 

missing data for air pollutants handled using full information maximum likelihood estimation. 

We tested 1-7 trajectory groups, with the optimal number of groups selected using a wide range 

of criteria including the Akaike Information Criterion (AIC), the Bayesian Information 

Criterion (BIC), and its sample size-corrected version (c-BIC). For each of these, lower scores 

indicate (relatively) better fitting models. We also considered the following criteria: overall 

average posterior probabilities of group membership as a measure of classification quality 

(APPA is an entropy index, with values approaching 1.0 indicating a favourable classification); 

group size (no trajectory groups should include <5% of participants to ensure reproducibility 

of the results); the usefulness of the number of groups in terms of the similarities/differences 

in their trajectory shapes; and the interpretability of these distinctive trajectories [38, 39]. After 

determining the optimal number of trajectory groups, we established the optimal shape of the 

trajectory by testing growth parameters for each trajectory group up to the fifth degree. Higher 

order growth parameters (quadratic to quintic) were dropped if not statistically significant 

(p<0.05). Trajectories were estimated for NO2, PM2.5, and each of the source-specific PM2.5 

concentrations. 

We used linear regression models to estimate associations between air pollution and cognitive 

performance for NO2 and total PM2.5, then for source-specific PM2.5. These models first 

included mean air pollution during the study period (2005-2017 for NO2; 2010-2017 for PM2.5) 

https://www.sciencedirect.com/topics/medicine-and-dentistry/maximum-likelihood-method


fitted as continuous exposures. We then fitted models including the air pollution trajectory 

group as categorical exposure; we chose as the reference trajectory group the one with the 

trajectory closest to the mean concentration of that pollutant during the study period (as this 

level was used for the continuous exposures). For both continuous and categorical exposures, 

we fitted basic models (Model 1), where we adjusted for age and sex and fully-adjusted models 

(Model 2), where we further adjusted for education, wealth, urbanicity, area-level deprivation, 

and the summary cognitive function measure assessed at baseline. All models were weighted 

to account for differential probability of selection into ELSA-HCAP, non-response (especially 

for the low cognition group, which had the lowest response rate), and the ELSA study design 

[35]. Data management, trajectories, and statistical analyses were performed using Stata/MP 

18.0 (and the traj plugin) [41, 42].  

Results 

Sample descriptives; NO2 and PM2.5 pollution mean and trajectories 

For this study, we selected all HCAP-ELSA respondents with no missing data on the exposure, 

outcome, or key confounders described above, with a final analytical sample of 1,172 

respondents. At ELSA wave 4, respondents were aged 65 years on average (SD=7); 54% were 

female and 77% were living in an urban area, with 25% in the highest wealth quintile and 14% 

living in the most deprived area quintile (Table 1). The mean (SD) 10-year average NO2 

concentration between 2008 and 2017 was 22.89 (6.36) μg/m3 and it was 11.89 (1.53) μg/m3 

for total PM2.5 between 2010 and 2017.  

Over the years under study, there was a general decline in both levels of NO2 and PM2.5, with 

the mean levels of NO2 reducing from 24.18 μg/m3 in 2008 to 21.36 μg/m3 in 2017, and for 

PM2.5 from 13.52 μg/m3 in 2010 to 10.33 μg/m3 in 2017 (Figure 1, Supplementary Table S2). 

As shown in Figure 1, we identified five NO2 exposure trajectories (Supplementary Table S3), 



and four PM2.5 trajectories (Supplementary Table S4). Although the slopes of the trajectory 

groups were statistically different and the changes in absolute values of air pollutants over time 

were not equal across groups, substantially the trajectory groups were largely parallel and are 

labelled in descending order of average exposure (groups 1-5 for NO2 and groups 1-4 for 

PM2.5). For instance, 20% of the respondents were exposed to a mean level of 9.71 μg/m3 of 

PM2.5 (with values reducing by 2.38 μg/m3 from 10.92 in 2010 to 8.53 μg/m3 in 2017) compared 

to 7% of the sample who were exposed to higher levels of PM2.5 (an average of 15.16 μg/m3, 

reducing by 4.43 μg/m3 from 17.43 μg/m3 in 2010 to 13.00 μg/m3 in 2017). Source-specific 

and fuel-specific PM2.5 values are presented in Table 1 and their trajectories are presented in 

Supplementary Figures S2 and S3. 

Outdoor air pollution and cognitive performance 

Table 2 shows the associations between cognitive performance and NO2 and total PM2.5 for 

each cognitive domain. When we considered air pollution as a continuous exposure, in models 

only adjusted for age and sex (Model 1), higher NO2 concentrations were generally associated 

with lower overall cognitive performance [β=-0.013; 95%CI=(-0.02;-0.00)], executive 

function [β=-0.016; 95%CI=(-0.03,-0.01)], and language [β=-0.016; 95%CI=(-0.03,-0.01)]. 

However, adjustment for other covariates weakened these associations and the main model 

findings (Model 2) remained statistically significant only for language [β=-0.013; 95%CI=(-

0.02,-0.00)]. When we considered groups of exposure to NO2, results suggest that even 

accounting for key personal and neighbourhood confounders, compared to those who 

experienced an average level of NO2 between 2008 and 2017 of 24.07 μg/m3, respondents in 

the group of highest exposure (at an average level of 36.34 μg/m3) had worse performance for 

overall cognitive function [β=-0.241; 95%CI=(-0.46,-0.02)], executive function [β=-0.291; 

95%CI=(-0.54,-0.04)], and language [β=-0.328; 95%CI=(-0.59,-0.07)]. Regardless of whether 

NO2 exposure was considered as a continuous or categorical variable, no associations between 



memory and NO2 were found although the direction of association generally suggested lower 

scores of cognitive performance on average with higher exposure.  

For total PM2.5, when we assessed the relationship between 8-year mean exposure and 

cognitive performance, we only found an association with the cognitive domain related to 

language [β=-0.039; 95%CI=(-0.08,-0.00)]. However, when trajectory groups were considered, 

we found that those exposed to the highest levels of PM2.5 (at an average level of 15.16 μg/m3) 

had consistently worse cognitive scores than those who experienced an average level of 

exposure to PM2.5 (11.48 μg/m3) in the years under study. This relationship was observed for 

both overall cognitive function [β=-0.334; 95%CI=(-0.55,-0.12)] as well as executive function 

[β=-0.292; 95%CI=(-0.57,-0.01)], language [β=-0.222; 95%(CI=-0.44,-0.01)], and memory 

[β=-0.376; 95%CI=(-0.58,-0.17)] though there was no clear evidence of a compelling 

concentration-response function across the groups. 

Tables 3 and 4 report fully adjusted associations between source-specific and fuel-specific 

PM2.5 and cognitive function (with basic Models 1 available in Supplementary Tables S5 and 

S6). Overall, we observed weak or no associations between source-specific PM2.5 and cognitive 

performance, with the exception that PM2.5 from industry and residential combustion were 

associated with worse language scores [β=-0.364; 95%CI=(-0.64,-0.09) and β=-0.321; 

95%CI=(-0.54,-0.11) respectively]; a similar direction and strength of associations was found 

when industry and residential combustion were examined using trajectory groups. Agriculture 

and road traffic also demonstrated similar trends though these could not be distinguished from 

no associations. The only cognitive domain associated with fuel-specific emissions was 

language where overall, lower levels of PM2.5 derived from solid biofuel, coal, as well as liquid 

oil and natural gas combustion were all associated with better performance (Table 5). Analysis 

using IQR change in air pollutions, that account for differences across the observed ranges in 

concentrations, are available in Supplementary Table S7. 



Discussion 

In this population-based study of English respondents aged 65 and older, air pollution exposure 

was associated with poorer cognitive performance, both overall and in the specific domains of 

executive function, language, and to some extent memory. However, we found some 

differences in the magnitude and direction of these associations depending on whether we used 

continuous or categorical measurements of the cumulative past exposure of the participants to 

outdoor air pollution. On the one hand, when we analysed the average concentration during the 

period of exposure as a linear term (i.e., cognitive function vs. a unit change from the mean), 

our results reached the conventional threshold level of 5% for statistical significance only for 

language, for both NO2 and PM2.5. Partly, this could be caused by power issues as the sample 

was relatively small and the estimated 95% confidence intervals just overlapped zero, with the 

direction of associations as expected. On the other hand, when we considered these exposures 

as categorical groups based on their levels and trends, we found that older adults experiencing 

the highest levels of outdoor air pollution had consistently poorer cognitive performance than 

those exposed to average levels of NO2 and PM2.5, with especially compelling associations for 

language and PM2.5. Although the percentage of respondents classified in the group exposed to 

the highest levels of NO2 (at an average of 36.34 μg/m3) and PM2.5 (at an average of 15.16 

μg/m3) is relatively small at 6-7%, this represents more than half a million people aged 65 and 

older in England. Efforts made to reduce air pollution concentration in the past decades should 

therefore continue, with a specific focus on those residential areas where outdoor pollution 

levels are the highest. 

Our findings are broadly in line with associations found in previous studies that have assessed 

the links between exposure to outdoor air pollution and cognitive performance. However, the 

direction of associations are not always consistent with previous findings. For instance, the 

association between exposure to highest levels of NO2 and poorer cognitive performance 



(overall as well as executive function and language domains) was in line with Zare Sakhvidi et 

al [23] but not with other studies that found links with dimensions of memory or even higher 

scores of cognition for higher exposure to NO2 [19, 21, 22]. Similarly, exposure to highest 

levels of PM2.5 was associated with lower cognitive scores overall and in all three domains of 

cognition studied, but these findings are not always in line with previous studies that have 

found associations for some but not all domains of cognition [16-22]. Moreover, it is worth 

mentioning that in our analyses based on trajectory groups, results are suggestive of a consistent 

monotonic concentration-response only for language and PM2.5. For the other air pollutants and 

cognitive domains, the associations are inverted j-shaped, similarly to findings reported 

elsewhere [12, 43, 44]. The suggestion that older people exposed to the lowest level of air 

pollution have lower cognitive scores than those exposed to average levels contradicts our 

initial hypothesis. Although our study adjusts for key individual and neighbourhood-level 

characteristics, it is still possible that the advantages for cognition of living in an area with 

lower levels of pollution are offset by other factors such as economic development, access to 

medical insurance and health services, or housing characteristics. Future research should 

explore this issue with different data source(s) that allow the inclusion of a wider range of 

potential confounders. 

Some of the inconsistencies between our findings and previous studies are also likely driven 

by the apparent differences across study designs and settings. For example, outdoor air 

pollution in previous studies was collected between 2000 and 2017 with exposure ranging 

between one to ten years prior to cognitive testing; its operationalisation included mostly 

continuous but also categorical (tertiles or quartiles) measures; and the median values of 

exposures ranged from 9.9 to 25.1 μg/m3 for PM2.5, and from 25.5 to 48.1 μg/m3 for NO2,, 

reflecting different levels of exposure to air pollution in different geographical settings. 

Additionally, and more importantly, the tests used to assess global and domain-specific 



cognitive scores as well as the methods used to construct and operationalise them were different 

from one study to another. Finally, the sample characteristics themselves were quite different 

– as an illustration, the mean age of the study participants ranged from 57 to 76 years old, and 

this range might well influence the scores in the cognitive tests, the exposure to air pollution, 

and the selectivity of the sample. 

Our study also extends the existing literature by examining associations of cognitive 

performance with sector- and fuel-specific PM2.5 emissions. We found that higher levels of 

PM2.5 from the industry and residential sectors and fuel combustion were consistently 

negatively associated only with the language domain. This was the case both for both 

continuous and categorical exposures, with the latter suggesting also a dose-response in their 

association between sector- and fuel-specific PM2.5 emissions and language. Previous studies 

have mostly investigated associations BC emissions and global cognitive performance as well 

as memory, language, and executive function with inconsistent findings [23-26, 45]. More 

research is needed to disentangle the links between source-specific PM2.5 emissions and 

cognitive health as well as potential mechanisms that might affect cognitive domains 

differently.  

Strengths and limitations  

Strengths of this study include the use of a representative sample of the general population of 

older people living in private households in England and the use of an extensive battery of 

cognitive tests designed to assess key cognitive domains affected by cognitive ageing, 

including memory, executive function, and language. Moreover, we had long-term exposure 

data measured up to ten years before the cognitive performance tests administered in the ELSA-

HCAP study and we were able to account for changes in the residential address of the 

participants during this time reducing therefore potential exposure misclassification. Also, in 

this study we accounted for a range of different sources of PM2.5, and these were isolated by 



removing each source individually from a chemical-transport dispersion model, leading to 

better specificity. The ability to investigate long-term exposure to NO2 and PM2.5, including 

source-specific PM2.5, increases our understanding of the neurotoxicity of air pollutants even 

though further studies are needed to explore the role of components of particulate matter on 

cognitive performance. A novel aspect of this study is also the use of group-based trajectory 

modelling to identify groups of older people exposed to different levels (and trends) of outdoor 

air pollution which is less common in air pollution epidemiology. In this work, the population 

under study largely experienced similar decreases in exposure to air pollution and we failed to 

find distinct trajectories (such as increasing, decreasing, and consistently high or low levels of 

exposure to air pollution). However, other studies in different geographical settings (with more 

heterogeneity and contrasting changes in concentrations of air pollutants or where regulations 

impact air pollution across different populations [46, 47]) may find this method useful to 

differentiate trajectories of exposure to air pollutants. Furthermore, by using group trajectories 

of pollutants we were able to capture more heterogeneity in exposure levels than when 

modelling the mean exposure. Also, unlike quartiles, tertiles, or other splits of the data based 

on arbitrary cut-offs of the data, group-based trajectory modelling identifies homogenous 

groups that share similar trajectories. Other strengths of this work include the availability of 

detailed individual and area-level information on key factors that could confound our 

associations, including a measure of baseline cognition. Finally, ELSA is part of a harmonized 

group of studies initially developed to facilitate cross-national comparisons (with more than 40 

countries around the world using the family of Health and Retirement Studies, HRS). In this 

study, we used data on cognitive performance based on the HCAP (conducted in dozens of 

countries in the HRS-style ageing surveys) and long-term exposure to outdoor air pollution that 

currently is being harmonised for up to eight countries of the HRS family. Future studies should 

exploit this data harmonisation effort by repeating these analyses in different geographical and 



social contexts (and possibly meta-analysing findings). Given the current diversity of study 

designs, exposures, and end-points, the availability of comparable measures will provide 

stronger insights into the links between outdoor air pollution exposure and cognitive ageing 

research. 

Despite these advantages, our study has some limitations. First, although air pollutant data were 

measured over 10 years pre-HCAP assessment, these years might not be representative of 

exposures over longer terms (and ideally across an individual’s entire lifetime or at different 

stages of the life course). Therefore, we might be unable to capture the true magnitude of the 

association between long-term exposure to air pollution and cognitive performance. Second, 

previous studies have suggested that the duration of exposure at different levels of intensity is 

as important as the overall intensity of exposure [43, 48]. In our study, however, we use yearly 

averages of exposures, failing to account for the duration of exposure to high NO2 and PM2.5 

concentrations (measured, for instance, as the number of days or months where concentrations 

are above certain thresholds) and therefore to elucidate on the role of (cumulative) short-term 

impacts of air pollutants on cognition. Third, as with all observational studies, we cannot 

completely rule out the possibility that the associations we observed are attributable to 

unmeasured confounding. Also, although we used survey weights to minimise selection bias 

and non-response, it is probable that those who survived for the duration of the study and who 

agreed to participate in HCAP were a selected sample to some extent (with higher probability 

of response among those with higher cognitive scores). If this population was healthier and 

more immune to the long-term exposures to air pollution, this might underestimate the effect 

sizes observed. Moreover, it is worth noting that HCAP did not include respondents living in 

long-term care or other institutional settings and was predominantly of White European 

ancestry. 



In summary, air pollution has been suggested as a modifiable risk factor for cognitive 

impairment. In our study, we found associations between exposure to NO2 and PM2.5 and poor 

cognitive performance, particularly at higher levels of concentration. Our data further indicate 

that key emission sources might be important particularly for the domain of language, although 

more research is needed to confirm these findings. Older people’s cognitive performance might 

benefit from continued efforts to reduce levels of exposure to air pollution, particularly where 

outdoor pollution levels are the highest. 
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Table 1 – Characteristics of the study population 

ELSA characteristics   

Mean age at baseline in years (SD) 65.37 (7.13) 

Sex 

Male 

Female 

 

46.3% (533) 

53.7% (639) 

Wealth Quintiles 

Lowest wealth 

Second 

Middle 

Fourth 

Highest wealth 

 

16.3% (N=186) 

18.5% (N=232) 

22.2% (N=261) 

18.5% (N=222) 

24.5% (N=271) 

Age at completion of highest education qualification 

14 or under 

15 

16 

17 

18 

19 or older 

 

12.7% (N=177) 

40.5% (N=474) 

19.6% (N=228) 

8.1% (N=81) 

4.7% (N=57) 

14.4% (N=155) 

Urbanicity 

Urban  

Rural 

 

77.3% (N=880) 

22.7% (N=292) 

Quintile Index of Multiple Deprivation Score 

0.37 - 8.32 [least deprived] 

8.32 - 13.74 

13.74 - 21.22 

21.22 - 34.42 

34.42 - 85.46 [most deprived] 

 

21.7% (N=268) 

25.2% (N=295) 

20.6% (N=248) 

18.4% (N=209) 

14.1% (N=152) 

Cognitive function (Range of scores) 

Overall cognition 

Executive function 

Language 

Memory 

 

-2.84; 2.42 

-2.77; 2.30 

-2.12; 3.77 

-2.81; 1.89 

Mean air pollutants pre-HCAP interview (SD)  

Nitrogen Dioxide (NO2) 22.89 (SD=6.36) 

Total fine particulate matter (PM2.5), μg/m3 

Agriculture 

Energy 

Industry 

Residential 

Road traffic 

 

Biofuel 

Coal 

Oil and Gas 

11.89 (SD=1.53) 

3.21 (SD=0.46) 

1.07 (SD=0.26) 

0.96 (SD=0.21) 

1.04 (SD=0.26) 

1.05 (SD=0.17) 

 

1.24 (SD=0.33) 

0.65 (SD=0.14) 

3.18 (SD=0.43)  

Sources: English Longitudinal Study of Ageing (ELSA) and Gateway to Global Aging Environmental 

Exposome Data for England. The sample is restricted to participants of the Harmonised Cognitive 

Assessment Protocol (HCAP) Sub-Study of ELSA (N=1,127). Weighted ELSA data. Notes: Data are 

reported as percentages (numbers) unless otherwise indicated. SD=Standard Deviation  



Figure 1. Trajectories of outdoor air pollution and characteristics of the groups 

 

Sources: Gateway to Global Aging Environmental Exposome Data for England. The sample is restricted to participants of the Harmonised Cognitive 

Assessment Protocol Sub-Study of the English Longitudinal Study of Ageing (ELSA-HCAP, N=1,127). NO2 (µg/m3) = Nitrogen dioxide; PM2·5 (µg/m3) = 

Particulate matter with aerodynamic diameters less than 2.5 μm. SD=Standard Deviation. Best-fitting trajectory groups were obtained using group-based 

trajectory modelling – See Supplementary Tables S3 and S4 for details. 
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Table 2 – Associations (95% confidence intervals) between outdoor air pollution concentrations (NO2 and total PM2.5) and 

cognitive performance in the ELSA-HCAP (2018) 

 Overall Cognition Executive Function Language Memory 

NO2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Mean NO2 (centred) 
-0.013** 

(-0.02,-0.00) 

-0.007 

(-0.02,0.00) 

-0.016** 

(-0.03,-0.01) 

-0.010 

(-0.02,0.00) 

-0.016** 

(-0.03,-0.01) 

-0.013* 

(-0.02,-0.00) 

-0.005 

(-0.01,0.00) 

-0.002 

(-0.01,0.01) 

Group 1 (mean 13.7 μg/m3) 
-0.006 

(-0.18,0.16) 

-0.117 

(-0.28,0.05) 

-0.017 

(-0.19,0.16) 

-0.152 

(-0.32,0.02) 

0.005 

(-0.19,0.20) 

-0.044 

(-0.25,0.16) 

-0.001 

(-0.17,0.17) 

-0.069 

(-0.25,0.11) 

Group 2 (mean 19.7 μg/m3) 
0.062 

(-0.07,0.20) 

-0.002 

(-0.12,0.11) 

0.052 

(-0.09,0.19) 

-0.006 

(-0.12,0.11) 

0.082 

(-0.08,0.24) 

0.030 

(-0.12,0.18) 

0.039 

(-0.10,0.17) 

-0.013 

(-0.14,0.11) 

Group 3 (mean 24.1 μg/m3) Ref Ref Ref Ref Ref Ref Ref Ref 

Group 4 (mean 28.9 μg/m3) 
-0.055 

(-0.21,0.10) 

-0.014 

(-0.14,0.11) 

-0.115 

(-0.27,0.04) 

-0.061 

(-0.19,0.07) 

-0.056 

(-0.25,0.13) 

-0.019 

(-0.19,0.15) 

0.029 

(-0.12,0.18) 

0.037 

(-0.10,0.17) 

Group 5 (mean 36.3 μg/m3) 
-0.267* 

(-0.53,-0.01) 

-0.241* 

(-0.46,-0.02) 

-0.333* 

(-0.62,-0.04) 

-0.291* 

(-0.54,-0.04) 

-0.369** 

(-0.64,-0.10) 

-0.328* 

(-0.59,-0.07) 

-0.148 

(-0.39,0.09) 

-0.143 

(-0.37,0.08) 

         

Total PM2.5 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Mean PM2.5 (centred) 
-0.025 

(-0.06,0.01) 

-0.008 

(-0.04,0.03) 

-0.027 

(-0.07,0.02) 

-0.005 

(-0.05,0.04) 

-0.048* 

(-0.09,-0.01) 

-0.039* 

(-0.08,-0.00) 

-0.016 

(-0.05,0.02) 

-0.010 

(-0.05,0.03) 

Group 1 (mean 9.7 μg/m3) 
-0.050 

(-0.21,0.11) 

-0.065 

(-0.20,0.07) 

-0.020 

(-0.18,0.15) 

-0.049 

(-0.19,0.09) 

0.060 

(-0.11,0.23) 

0.075 

(-0.07,0.22) 

-0.097 

(-0.25,0.06) 

-0.103 

(-0.24,0.05) 

Group 2 (mean 11.5 μg/m3) Ref Ref Ref Ref Ref Ref Ref Ref 

Group 3 (mean 12.8 μg/m3) 
0.058 

(-0.06,0.18) 

0.059 

(-0.05,0.17) 

0.059 

(-0.06,0.18) 

0.065 

(-0.04,0.17) 

0.012 

(-0.14,0.16) 

0.021 

(-0.12,0.16) 

0.063 

(-0.06,0.18) 

0.060 

(-0.05,0.17) 

Group 4 (mean 15.2 μg/m3) 
-0.460*** 

(-0.71,-0.21) 

-0.334** 

(-0.55,-0.12) 

-0.434** 

(-0.74,-0.13) 

-0.292* 

(-0.57,-0.01) 

-0.332** 

(-0.55,-0.11) 

-0.222* 

(-0.44,-0.01) 

-0.442*** 

(-0.66,-0.23) 

-0.376*** 

(-0.58,-0.17) 

Sources – English Longitudinal Study of Ageing (ELSA), Harmonised Cognitive Assessment Protocol (HCAP) Sub-Study of ELSA, and Gateway to Global Aging 

Environmental Exposome Data for England (N=1,127). Notes: For all scores, negative β indicates worse cognitive performance. Model 1 is adjusted for age and sex. Model 2 

is further adjusted for age at completion of highest education qualification, wealth quintiles, urbanicity, deprivation index quintiles, and cognitive function at baseline. All 

covariates were drawn from ELSA Wave 4 (2008-09). NO2 (µg/m3) =nitrogen dioxide; PM2·5 (µg/m3) =particulate matter with aerodynamic diameters less than 2.5 μm. 

Values in brackets represent 95% confidence intervals. * p < 0.05, ** p < 0.01, *** p < 0.001. Weighted data. 
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Table 3 – Results of multiple linear regression for the association between sector-specific sources of PM2.5 and cognitive 

performance 

  Overall Cognition Executive Function Language Memory 
A

g
ri

cu
lt

u
re

 Mean PM2.5 (centred) 0.005 (-0.11,0.12) 0.030 (-0.09,0.15 -0.106 (-0.22,0.01) 0.003 (-0.12,0.13) 

Group 1 (mean 2.4 μg/m3) -0.052 (-0.21,0.11) -0.046 (-0.21,0.12) 0.165 (-0.02,0.35) -0.056 (-0.24,0.13) 

Group 2 (mean 2.9 μg/m3) Ref Ref Ref Ref 

Group 3 (mean 3.4 μg/m3) 0.021 (-0.09,0.13) 0.033 (-0.08,0.14) -0.037 (-0.18,0.11) 0.059 (-0.07,0.18) 

Group 4 (mean 3.9 μg/m3) -0.011 (-0.17,0.15) 0.014 (-0.16,0.19) -0.045 (-0.22,0.13) -0.005 (-0.16,0.15) 

In
d

u
st

ry
 Mean PM2.5 (centred) -0.093 (-0.35,0.16) -0.068 (-0.36,0.22) -0.364* (-0.64,-0.09) -0.084 (-0.36,0.19) 

Group 1 (mean 0.5 μg/m3) -0.020 (-0.22,0.18) 0.016 (-0.19,0.22) 0.095 (-0.12,0.31) -0.053 (-0.28,0.17) 

Group 2 (mean 0.8 μg/m3) Ref Ref Ref Ref 

Group 3 (mean 1.0 μg/m3) -0.047 (-0.06,0.15) 0.079 (-0.03,0.19) -0.011 (-0.15,0.12) 0.051 (-0.06,0.16) 

Group 4 (mean 1.3 μg/m3) -0.003 (-0.14,0.15) -0.005 (-0.16,0.15) -0.151 (-0.33,0.02) 0.020 (-0.13,0.17) 

E
n

er
g

y 

Mean PM2.5 (centred) 0.009 (-0.18,0.20) 0.087 (-0.10,0.28) -0.090 (-0.35,0.17) -0.055 (-0.27,0.16 

Group 1 (mean 0.8 μg/m3) -0.007 (-0.12,0.11) 0.019 (-0.10,0.14) 0.083 (-0.06,0.23) -0.056 (-0.18,0.07) 

Group 2 (mean 1.0 μg/m3) Ref  Ref Ref Ref 

Group 3 (mean 1.3 μg/m3) -0.061 (-0.19,0.06) 0.031 (-0.10,0.16) -0.117 (-0.26,0.03) -0.098 (-0.22,0.03) 

Group 4 (mean 1.6 μg/m3) -0.028 (-0.18,0.13) 0.021 (-0.16,0.20) 0.084 (-0.13,0.30) -0.148 (-0.31,0.01) 

R
es

id
en

ti
al

 Mean PM2.5 (centred) -0.096 (-0.30,0.11) -0.079 (-0.31,0.15) -0.321** (-0.54,-0.11) -0.079 (-0.30,0.14) 

Group 1 (mean 0.7 μg/m3) -0.131 (-0.26,0.00) -0.129 (-0.27,0.01) -0.011 (-0.15,0.13) -0.138 (-0.28,0.00) 

Group 2 (mean 1.0 μg/m3) Ref  Ref Ref Ref 

Group 3 (mean 1.2 μg/m3) -0.073 (-0.18,0.04) -0.032 (-0.14,0.08) -0.144* (-0.29,-0.00) -0.063 (-0.18,0.05) 

Group 4 (mean 1.5 μg/m3) -0.121 (-0.27,0.02) -0.136 (-0.29,0.02) -0.210* (-0.39,-0.03) -0.102 (-0.26,0.05) 

R
o

ad
 T

ra
ff

ic
 Mean PM2.5 (centred) 0.102 (-0.21,0.41) 0.039 (-0.30,0.38) 0.025 (-0.30,0.35) 0.051 (-0.29,0.40) 

Group 1 (mean 0.8 μg/m3) -0.091 (-0.21,0.03) -0.094 (-0.22,0.03) 0.075 (-0.06,0.21) -0.114 (-0.24,0.02) 

Group 2 (mean 1.0 μg/m3) Ref  Ref Ref Ref 

Group 3 (mean 1.1 μg/m3) -0.027 (-0.14,0.09) -0.029 (-0.15,0.09) -0.018 (-0.17,0.14) -0.036 (-0.15,0.08) 

Group 4 (mean 1.3 μg/m3) -0.101 (-0.27,0.07) -0.156 (-0.34,0.03) -0.021 (-0.19,0.15) -0.095 (-0.27,0.08) 

Sources – English Longitudinal Study of Ageing (ELSA), Harmonised Cognitive Assessment Protocol (HCAP) Sub-Study of ELSA, and Gateway to Global Aging 

Environmental Exposome Data for England (N=1,127). Notes: For all scores, negative β indicates worse cognitive performance. All results presented in this Table are 

adjusted for age, sex, age at completion of highest education qualification, wealth quintiles, urbanicity, deprivation index quintiles, and cognitive function at baseline (Model 

2). All covariates were drawn from ELSA Wave 4 (2008-09). Results from Model 1 (that adjusted for age and sex) are available in the Supplementary Table 5. PM2·5 (µg/m3) 

= Particulate matter with aerodynamic diameters less than 2.5 μm. Values in brackets represent 95% confidence intervals. * p < 0.05, ** p < 0.01, *** p < 0.001. Weighted data.   
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Table 4 – Results of multiple linear regression for the association between fuel-specific sources of PM2.5 and cognitive 

performance 

  Overall Cognition Executive Function Language Memory 
B

io
fu

el
 

Mean PM2.5 (centred) -0.058 (-0.22,0.10) -0.033 (-0.21,0.14) -0.236** (-0.41,-0.07) -0.059 (-0.23,0.11) 

Group 1 (mean 0.7 μg/m3) -0.106 (-0.29,0.08) -0.057 (-0.26,0.14) 0.044 (-0.16,0.25) -0.140 (-0.35,0.07) 

Group 2 (mean 1.0 μg/m3) Ref  Ref Ref Ref 

Group 3 (mean 1.3 μg/m3) -0.034 (-0.15,0.08) 0.030 (-0.09,0.15) -0.074 (-0.21,0.06) -0.058 (-0.18,0.06) 

Group 4 (mean 1.7 μg/m3) -0.031 (-0.16,0.10) 0.023 (-0.11,0.16) -0.159* (-0.31,-0.01) -0.059 (-0.20,0.08) 

C
o

al
 

Mean PM2.5 (centred) -0.125 (-0.47,0.22) 0.017 (-0.34,0.37) -0.525** (-0.91,-0.14) -0.155 (-0.54,0.23) 

Group 1 (mean 0.4 μg/m3) -0.080 (-0.27,0.11) -0.075 (-0.27,0.12) -0.012 (-0.20,0.18) -0.067 (-0.27,0.14) 

Group 2 (mean 0.6 μg/m3) Ref  Ref Ref Ref 

Group 3 (mean 0.7 μg/m3) 0.041 (-0.06,0.15) 0.036 (-0.07,0.15) -0.081 (-0.22,0.05 0.075 (-0.04,0.19) 

Group 4 (mean 0.9 μg/m3) -0.127 (-0.27,0.01) -0.078 (-0.23,0.08) -0.238** (-0.39,-0.08) -0.103 (-0.24,0.04) 

O
il 

an
d

 G
as

 Mean PM2.5 (centred) 0.013 (-0.14,0.11) -0.019 (-0.16,0.12) -0.133* (-0.26,-0.00) -0.002 (-0.15,0.14) 

Group 1 (mean 2.5 μg/m3) -0.086 (-0.23,0.06) -0.115 (-0.26,0.03) 0.212* (0.05,0.37) -0.124 (-0.29,0.03) 

Group 2 (mean 3.0 μg/m3) Ref  Ref Ref Ref 

Group 3 (mean 3.4 μg/m3) 0.065 (-0.04,0.17) 0.021 (-0.09,0.13) 0.099 (-0.04,0.23) 0.070 (-0.04,0.18) 

Group 4 (mean 4.0 μg/m3) -0.098 (-0.28,0.09) -0.150 (-0.35,0.05) -0.019 (-0.22,0.18) -0.099 (-0.29,0.08) 

Sources – English Longitudinal Study of Ageing (ELSA), Harmonised Cognitive Assessment Protocol (HCAP) Sub-Study of ELSA, and Gateway to Global Aging 

Environmental Exposome Data for England (N=1,127). Notes: For all scores, negative β indicates worse cognitive performance. All results presented in this Table are 

adjusted for age, sex, age at completion of highest education qualification, wealth quintiles, urbanicity, deprivation index quintiles, and cognitive function at baseline (Model 

2). All covariates were drawn from ELSA Wave 4 (2008-09). Results from Model 1 (that adjusted for age and sex) are available in the Supplementary Table 6. PM2·5 (µg/m3) 

= Particulate matter with aerodynamic diameters less than 2.5 μm. Values in brackets represent 95% confidence intervals. * p < 0.05, ** p < 0.01, *** p < 0.001. Weighted data.  
 


