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Abstract7

BACKGROUND8

There are large mortality gaps among U.S. states measured by life ex-9

pectancy, lifespan variance, and crude death rate. Yet these measures tell10

different stories, since they are affected differently by mortality change11

across space and time.12

OBJECTIVE13

Identify the contributions of age-specific mortality rate differences to gaps14

in the three aggregate measures.15

METHODS16

We make novel use of decompositions to analyze how age-specific mor-17

tality differences determine each of the three mortality measures. For life18

expectancy and lifespan variance, we separate the size of age-specific mor-19

tality differences from the sensitivity to those differences. For crude death20

rate, we separate exactly the age-specific contributions of population age21

structure, and mortality rates.22

CONCLUSIONS23

Differences in under-5 mortality do not significantly affect differences in24

any measure. Mortality differences at middle and old ages play a signifi-25

cant role in differences in life expectancy. In contrast, differences in lifes-26



pan variance are more affected by mortality differences at the middle ages27

than at old ages. The significance of mortality differences differs in the28

two sexes. Crude death rates are largely driven by the elderly, with cross-29

state differences primarily explained by the share of the older population,30

while the role of mortality differences has grown over time.31

CONTRIBUTION32

We use a sensitivity-based decomposition approach and the Kitagawa de-33

composition to analyze gaps in three aggregate mortality indicators. Our34

approach is essential because an age group’s contribution to a gap in a35

given aggregate indicator can result from large mortality rate differences,36

high sensitivity of the indicator, or shift in population composition.37



1. Introduction38

Mortality differences across U.S. states have long been recognized (Sub-39

ramanian, Kawachi, and Kennedy 2001; Fenelon 2013; Montez and Berk-40

man 2014). To assess the import of these differences, three distinct met-41

rics have been widely used: life expectancy, the variance of age-at-death,42

and the crude death rate. Life expectancy, the average number of years43

a person is expected to live, often serves as a key indicator of population44

health, used to track improvements in health outcomes and guide policy45

(Avendano and Kawachi 2014; Oeppen and Vaupel 2002). The variance46

of age-at-death reveals the degree of inequality within a population, offer-47

ing insights into the equity of survival outcomes, and has attracted growing48

attention (Wilmoth and Horiuchi 1999a; Edwards and Tuljapurkar 2005;49

Firebaugh et al. 2014; Van Raalte, Sasson, and Martikainen 2018). Finally,50

the crude death rate provides a direct measure, the number of deaths per51

1,000 people in a population over a given time period, and is often featured52

in media reports and public discourse (Xiao, Mei, and Jiang 2022; Liang,53

Guo, and Tuljapurkar 2023). Even though crude death rate is known to de-54

pend greatly on population age distribution, this metric remains useful for55

monitoring changes in mortality over time and across geographic units. Of56

these three, no single metric captures the distinct, albeit complementary,57

dimensions of population mortality (Aburto et al. 2020).58

A particular state in the U.S. may have higher life expectancy than59

the U.S., but also a higher variance of age-at-death and a higher crude60

death rate. How should we evaluate these metrics in terms of the changes61

within a state over time, or in comparison to other states? Any comparative62

analysis must reckon with the fact that declines in age-specific mortality63

may have quite different effects on these three metrics. Reductions in age-64

specific mortality at any age always increase e0 (Keyfitz, Caswell et al.65

2005; Goldman and Lord 1986; Vaupel and Canudas-Romo 2003). But66

the sensitivity of variance of age-at-death to mortality decline depends on67

a “young-old threshold” age. Mortality declines at ages below the thresh-68

old will reduce the variance but mortality decline at ages above the thresh-69



old will increase the variance! The reason is simply that saving lives at70

young ages narrows the distribution of ages at death, while saving lives71

at old ages pushes the frontier of longevity outward, broadening the dis-72

tribution (Edwards and Tuljapurkar 2005; Vaupel, Zhang, and van Raalte73

2011; Zhang and Vaupel 2009; Van Raalte and Caswell 2013; Gillespie,74

Trotter, and Tuljapurkar 2014). Empirical studies confirm these patterns:75

historically, mortality declines at younger ages consistently raised e0 while76

reducing the variance of age-at-death (Wilmoth and Horiuchi 1999a; Ed-77

wards and Tuljapurkar 2005). More recent gains at older ages above the78

threshold have been linked to widening lifespan inequality or slower com-79

pression (Tuljapurkar, Li, and Boe 2000; Van Raalte, Sasson, and Mar-80

tikainen 2018). The crude death rate is influenced not only by mortality81

decline but also by changes in population age structure (Preston, Heuve-82

line, and Guillot 2001). Even with reductions in age-specific mortality83

rates, an aging population can lead to higher crude death rates.84

Numerous methods have been developed to quantify age-specific con-85

tributions to changes in life expectancy (Gupta 1978; Pollard 1982; Ar-86

riaga 1984; Andreev, Shkolnikov, and Begun 2002; Shkolnikov, Andreev,87

and Begun 2003) and some have been developed to explore changes in88

lifespan variance (Andreev and Shkolnikov 2012; Gillespie, Trotter, and89

Tuljapurkar 2014). When comparing national populations, a general find-90

ing is that e0 is most affected by mortality among children under five and91

adults over 60, whereas variance of age-at-death is most affected by mor-92

tality at middle ages, such as around age 40 (Hiam, Minton, and McKee93

2021; Aburto et al. 2020). But do these conclusions also hold for state94

within the U.S.?95

To answer that question, we decompose spatial gaps in life expectancy96

at birth and variance of age-at-death in terms of: (a) the differences in97

age-specific mortality rate and (b) the sensitivity to mortality (change of98

measures to proportional changes in age-specific mortality rate). In this99

way, we can identify the ages at which mortality differences truly mat-100

ter by evaluating mortality gaps and sensitivity together. An age group101

will only matter if it has both a large sensitivity and a large differences in102



mortality rate. If either one of these is close to zero, that age group does103

not contribute significantly. In contrast to many previous decompositions,104

our approach makes clear why mortality decline in a given age group can105

have a high contribution to one mortality metric but a much smaller (even106

negative) contribution to another metric.107

Secondly, in the same spirit, we examine differences in crude death108

rate using the Kitagawa decomposition to separate exactly the contribu-109

tions of differences in age-specific mortality rates and in population age110

structure between populations. Unlike life expectancy at birth and vari-111

ance of age-at-death, the crude death rate is sensitive to differences in the112

age structure of populations, so we are careful in making comparisons113

across space and time.114

The need for new decompositions was noted recently by Su and col-115

leagues (2024), who developed a different decomposition method for life116

expectancy and life disparity and applied that to U.S. states. However, in117

their approach the population composition is determined by the proportion118

of each state’s population in a given age group relative to the national pop-119

ulation. Consequently, their decomposition reflects the relative weight of120

each state’s mortality in shaping national-level outcomes, and so is highly121

sensitive to mortality in populous states. As a result, even if small states122

achieve notable mortality improvements, their impact on national life ex-123

pectancy growth may appear limited. Our approach does not have that124

problem. To highlight state-level mortality dynamics, we use decomposi-125

tions that avoid the influence of population size and are both mathemati-126

cally and demographically meaningful.127

2. Data source128

We obtain age- and sex-specific mortality rates for 50 U.S. states (exclude129

the District of Columbia) from 1969 to 2019 in each single year through130

the United States Mortality DataBase (USMDB 2024). State-level pop-131

ulation data for the same period were sourced from the National Cancer132



Institute (NCI 2024). To match population data and mortality data across133

all ages, the penalized composite link model (PCLM) from R package134

‘ungroup’ is used to extend and smooth the population counts to age 110+135

(Rizzi, Gampe, and Eilers 2015).136

3. Methods137

3.1 Sensitivity of life expectancy at birth and variance of age-at-death138

3.1.1 Life expectancy at birth139

In a given population, the life expectancy at birth e0 is140

e0 =

∫ ∞

0

dx l(x), (1)

where l(x) is the probability of surviving from birth to age x.141

In any year, for any state i, the age specific mortality rate µi(x) at age142

x can always be thought of relative to the national mortality rate µu(x),143

µi(x) = [1 + δi(x)]µu(x). (2)

This equation defines the proportional change δi(x) that must be applied144

to the national µu(x) to produce µi(x).145

If the product (δi(x)·µu(x)) ≪ 1, we can use a linear Taylor expansion146

to get the life expectancy for state i,147

ei0 = eu0 −
∫ ∞

0

dx lu(x)

∫ x

0

ds δi(s)µu(s), (3)

where eu(0) is the life expectancy for the nation. Thus the contribution of148

mortality rate differences at any age x is the product149

−lu(x)

∫ x

0

ds δi(s)µu(s), (4)



Is the linear Taylor expansion appropriate? We examine the distribution of150

the product (δi(x) · µu(x)) ≪ 1 for all states in the U.S., for all years, for151

both sexes, and found that the product is almost always much less than 1152

(see the details in Appendix Table A-1). Not surprisingly, we find (below)153

that the decomposition equation (3) is remarkably accurate.154

Using California females in 1969 and 2019 as examples, the observed155

proportional difference in mortality rate between that state and the U.S.156

is shown in Figure 1a. In 2019, female mortality rates in California were157

consistently lower than in the U.S. Figure 1b displays age-specific contri-158

butions to the life expectancy gap, computed using equation (3). Finally, in159

Figure 1c we sum the age-specific contributions to obtain the total change160

in e0 relative to the baseline U.S. females. The estimated California fe-161

male e0 values is very close to the observed values, demonstrating that our162

method works for the observed data.163

Figure 1: Illustration of the e0 decomposition method

(a) (b) (c)

Note: The figures show the decomposition steps for the e0 gaps, with California and U.S. females in
1969 and 2019 as examples. (a) The proportional differences between µCA(x) and µu(x), denoted
δCA(x), are calculated according to equation (2). (b) The age-specific contributions to the e0 gaps
between California and the U.S.. (c) A comparison of the observed eCA

0 and the estimated eCA
0 , where

the estimated eCA
0 equals eu0 plus the changes in eu0 due to proportional changes δCA(x) in µu(x).

Source: Authors’ calculation based on USMDB (2024).



3.1.2 Variance of age-at-death164

We adopt a similar strategy to decompose the variance of age-at-death.165

Focus on the variance of age-at-death for deaths after age a denoted as166

V (a),167

V (a) =
2

l(a)

∫ ∞

a

dx xl(x) − [e(a)]2 − 2ae(a) (5)

where l(a)is the conditional survival probability from age a to age x, and168

e(a) is the life expectancy at age a.169

For any state i, we can compute δi(x) as the age-specific proportional170

change in the national mortality rate, as defined in equation (2). Then a171

linear Taylor expansion of equation (5) yields the difference between the172

state’s variance V i(a) and the national variance V i(a) as173

V i(a) = V u(a) + 2

∫ ∞

a

dx [eu(x) + a− x]
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s). (6)

Here the contribution of mortality rate differences at any age x is the prod-174

uct175

2[eu(x) + a− x]
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s). (7)

We focus on lifespan variance for deaths past early childhood, with176

a = 6. We do so to exclude the disproportionate (but uninformative) in-177

fluence of early childhood mortality on variance of age-at-death (Edwards178

and Tuljapurkar 2005). We could alternately have used V (10) (Edwards179

and Tuljapurkar 2005; Engelman, Canudas-Romo, and Agree 2010) or180

V (15) (Vaupel, Zhang, and van Raalte 2011; Gillespie, Trotter, and Tul-181

japurkar 2014). If she prefers, the reader can use any other choice.182

To illustrate, the age-specific contributions to the V (6) gaps between183

California and the U.S., as well as the estimated V (6) values, are shown in184

Figure 2b and Figure 2c respectively for illustration.185



Figure 2: Illustration of the V (6) decomposition method

(a) (b) (c)

Note: The figures show the decomposition steps for the V (6) gaps, with California and U.S. females
in 1969 and 2019 as examples. (a) The proportional differences between µCA(x) and µu(x),
denoted δCA(x), are calculated according to equation (2). (b) The age-specific contributions to the
V (6) gap between California and the U.S. average. (c) A comparison of the observed V CA(6) and
the estimated V CA(6), where the estimated V CA(6) equals V u(6) plus the changes in V u(6) due to
proportional changes in µu(x).
Source: Authors’ calculation based on USMDB (2024).

3.1.3 Summary of the sensitivity approach186

In our decompositions above, the U.S. national population is always the187

reference. We identify age-specific contributions to the differences in these188

measures in terms of the product of the sensitivity of the measure to the189

age-specific mortality rate ρ(µ(x)), and the proportional difference in age-190

specific mortality rates δ(µ(x)) between the populations being compared.191

For an age group to matter, we need a large sensitivity with a large mortal-192

ity gap.193

3.2 Crude death rate and Kitagawa decomposition194

The crude death rate (CDR), also known as the per-capita death rate, is195

defined as:196



CDR =

∫ ∞

0

dxµ(x) · c(x), (8)

197
where µ(x) is the mortality rate and c(x) the proportion of individuals at198

age x. This expression shows how the CDR is determined by the interac-199

tion of age-specific mortality rates and the population’s age structure.200

We use the Kitagawa decomposition (Kitagawa 1955) to separate age-201

specific mortality differences and compositional differences in explaining202

the CDR gap between an individual state (indicated by superscript i) and203

the U.S. (indicated by superscript u) as a whole:204

∆CDR =

∫ ∞

0

dx [µi(x)− µu(x)]
ci(x) + cu(x)

2

+

∫ ∞

0

dx
µi(x) + µu(x)

2
[ci(x)− cu(x)]

(9)

205
The first term on the right-hand side of the above equation isolates the206

contribution of differences in age-specific mortality rates between the indi-207

vidual state i and the U.S. average u, by holding the age structure constant208

at the average over both populations. The second term isolates the contri-209

bution of differences in age structure between the state i and the U.S., by210

holding mortality rates constant at their averaged across both populations.211

This term highlights how differences in population structure, such as in the212

proportion of elderly individuals, affects the CDR gap.213

For instance, states with higher proportions of older populations, ci(x) >214

cu(x) at older ages, may exhibit higher CDRs, even if their age-specific215

mortality rates µi(x) are similar to the U.S. average. Conversely, states216

with much lower age-specific mortality rates, µi(x) < µu(x), may offset217

the impact of an older population structure, resulting in a lower CDR.218



4. Results219

4.1 Trends in mortality dynamics across U.S. states220

We start with the important aspects of the similarities and differences221

across the country and also over time. While life expectancy has increased222

in all states, though at different speeds, changes in the variance of age-at-223

death and crude death rate have varied in both direction and magnitude,224

with some states experiencing increases and others declines. These pat-225

terns reveal that some states have maintained and expanded their advantage226

in all three aspects over time, in contrast to some that are always disadvan-227

taged. But most states have followed complex trajectories over time, with228

improvements in one indicator but stagnation or deterioration in others.229

All three maps in Figure 3 use green to indicate an advantage (higher230

life expectancy, lower lifespan variance, and lower crude death rate) of a231

individual state compared to the U.S. average, and use purple to indicate232

the opposite. As a reference, in 2019, U.S. females had a e0 of 81.48 years,233

a V (6)of 203.71, and a CDR of 8.68 per 1,000 people. For U.S. males, e0234

was 76.46 years, V (6) was 261.70, and the CDR was about 9.17 per 1,000235

people. In general, states on the West Coast and in the Northeast exhibited236

relatively higher life expectancy, lower variance of age-at-death, and lower237

crude death rates compared to the U.S. average, while Southern states and238

parts of the Central region showed the opposite pattern.239



Figure 3: The gaps between individual states and the U.S. in
2019

(a) Gaps in e0

(b) Percentage differences in V (6)

(c) Gaps in CDR

Note: For gaps in e0 and CDR, we directly use the differences between individual states and the
U.S.. In contrast, the percentage differences in V (6) are calculated as [V i(6)− V u(6)]/V u(6),
given that the absolute values of variance are much larger than those of life expectancy or the crude
death rate.
Source: Authors’ calculation based on USMDB (2024).

Figure 4 illustrates state-level mortality dynamics from 1969 to 2019.240

Each point represents a specific state or the U.S. average (latter identified241



on the figure). The horizontal movement shows that e0 improved in all242

states from 1969 to 2019. The vertical axis represents changes in the CDR,243

with points distributed both above and below the horizontal reference line,244

reflecting that some states experienced an increase in CDR over the past 50245

years, while others saw a decline. The size and color of each point reflect246

changes in V (6): green indicates a decrease in V (6), signifying a narrower247

distribution of age at death and reduced lifespan inequality, whereas purple248

indicates an increase in V (6), signifying increased lifespan inequality. The249

magnitude of these changes is shown by the varying size of the points.250

While V (6) declined for females in most (but not all) states, it increased251

for males in most (but not all) states.252

Figure 4: Mortality dynamics of each state and the U.S., from
1969 to 2019

Note: The changes of mortality indicators here are calculated by values in 2019 minus values in
1969. Details of each state show in Figure A-3.
Source: Authors’ calculation based on USMDB (2024).

We illustrate the diversity of state-level mortality change by three ex-253

amples. In 2019, California had higher e0, lower V (6), and a lower CDR254



than the U.S. average. Over the 50-year period, California also experi-255

enced improvements in all three measures, indicating steady progress in256

mortality outcomes. West Virginia, by contrast, exhibited significantly257

lower life expectancy at birth, higher variance of age-at-death, and higher258

crude death rate relative to the national average. From 1969 to 2019, West259

Virginia’s gains in e0 were among the smallest across all states, and were260

accompanied by rising CDR and a marked increase in V (6). Texas pre-261

sented a picture of overall improvement between 1969 and 2019, with in-262

creasing e0, declining V (6) and declining CDR. In 2019, all three mea-263

sures in Texas were lower than the national average. These mixed patterns264

reinforce the need for multiple indicators to fully assess mortality condi-265

tions.266

4.2 Age-specific contribution to mortality gaps267

We now apply our decompositions to examine how mortality differences268

by age shape state-level performance as measured by the three metrics e0,269

V (6), and CDR in the years 1969 to 2019. The following generalizations270

emerged from our analyses. (1) Under-five mortality contributes negligi-271

bly to state-level differences in e0 and crude death rates, as improvements272

in child mortality have benefited all states relatively equally across the273

country. (2) Mortality differences at middle and older ages are the primary274

drivers of differences in e0, with midlife playing a more pronounced role275

for males than for females. (3) V (6) is more strongly influenced by mor-276

tality differences at midlife than at older ages. State-level differences in277

variance are more pronounced for males than for females. (4) Crude death278

rates are largely driven by the elderly population in nearly all U.S. states.279

Among the elderly, cross-state differences in crude death rates are primar-280

ily explained by differences in the degree of population aging, although281

the influence of mortality differences has increased over time.282



4.2.1 Life expectancy at birth283

We start with e0, reporting the significance of mortality differences in284

broad age groups rather than by exact ages. In most states we find minimal285

contributions from the youngest age group (0-5 years) for both sexes (for286

more details on this, see Figure A-5, so we focus on middle-ages (6-64287

years) and old-age (65+ years), where mortality plays a central role in288

shaping differences in e0. From 1969 to 2019, the contribution of old-age289

mortality increased across most states for both sexes, while midlife mor-290

tality has a stronger impact among males than females.291

The maps in Figure 5 show contributions in 1969 and 2019 (mid-292

dle age, top row; old age, bottom row) for these two age groups for fe-293

males. Increasingly dark shades of red indicate increasing magnitudes of294

age-group contributions to the statewise e0 gaps. Small contributions are295

those that account for less than 25% of the total e0 gap, moderate contri-296

butions range from 25% to 75%, and strong contributions exceed 75%.297

In 1969, contributions from old-age mortality differences were already298

slightly greater than those from middle-aged mortality among females in299

most states. By 2019, this pattern had become more pronounced, with old-300

age mortality differences playing an even larger role in many states. For301

males, contributions from middle-aged and old-age mortality differences302

were roughly similar in 1969. By 2019, this pattern remained largely con-303

sistent, although contributions from old-age mortality had become slightly304

more prominent. (Details are provided in Appendix Figure A-5.)305



Figure 5: Contributions (magnitude only) to gaps in female e0
of mortality differences at middle and old age groups;
individual states vs. the U.S.,1969 and 2019

Note: Different shades indicate the magnitude of contributions to e0 gaps: slight (<25%), moderate
(25%–75%), and strong (>75%).
Source: Authors’ calculation based on USMDB (2024).

4.2.2 Variance of age-at-death306

Given our finding that the youngest ages contribute the least to mortality307

differences across states, we focus on the variance of age-at-death for indi-308

viduals surviving beyond age 6. The sensitivity of V (6) is negative below309

and positive above a threshold age (T (6)), as illustrated in Figure A-1b.310

We find that the gaps in V (6) were largely shaped by mortality before the311

threshold age, whereas the impact of mortality after the threshold age was312

comparatively smaller and more evenly distributed across states.313

Using maps, Figure 6 shows for females the age-specific contribution314

to percentage differences in inequality V (6) (state vs. nation). Using the315

year-specific threshold age for U.S. females, we show contributions from316

deaths before ages below T (6) (top row) and later ages (bottom row). The317

legend shows how the contributions are grouped, negative percentage dif-318

ferences are marked in green, while positive differences are shown in pur-319



ple. Negative gaps, i.e., increased inequalities (as measured by V (6)), are320

mainly driven by deaths occurring before the young-old threshold age, as321

evidenced by the patterns in the top row of Figure 6.322

In 2019, the purple shading in southern states highlights the substantial323

impact of deaths occurring before the threshold ages on lifespan variance.324

In contrast, mortality differences after the threshold age (bottom row of325

Figure 6) are smaller and more evenly distributed across states. For ex-326

ample, in 2019, the V (6) for females in West Virginia was 265.85, about327

30.51% higher than the national average, indicating a more unequal distri-328

bution of age at death in West Virginia than in the U.S. for females. This329

difference in equality was the result of a 41.72% difference in early deaths330

and a -11.21% difference in later deaths. In words, compared to the na-331

tional average, females in West Virginia had a higher probability of death332

at young ages below T (6), and lived shorter (higher average mortality)333

than the U.S. at ages above T (6).334



Figure 6: The decomposition of percentage differences of V (6)
between individual states and the U.S. for females

Note: The percentage differences in V (6) between individual states and the U.S. are calculated as
[V i(6)− V u(6)]/V u(6), and the percentage differences from inequality before and after threshold
age are also divided by V u(6).
Source: Authors’ calculation based on USMDB (2024).

4.2.3 Crude death rate335

Given the sensitivity of the crude death rate to the age structure of the336

population, and within the context of population aging, we focused on the337

crude death rate at ages 65 and above (CDR65+) and explored its contribut-338

ing factors. Our findings highlight a fundamental demographic pattern: by339

2019, aging populations had become widespread in all states, resulting in340

deaths increasingly concentrated among older age groups. Cross-state dif-341

ferences in crude death rates among the elderly primarily reflect varying342

degrees of population aging, though the influence of mortality differences343

has increased over time. Southern states, in particular, have seen higher344

crude death rates, might due to the domestic migration of older adults345

seeking warmer climates.346



Figure 7 illustrates the strong association between the percentage of347

the population aged 65 and above and the percentage of CDR65+ relative348

to the total crude death rate CDRtotal, presented separately for females349

(left panel) and males (right panel). Each state is represented by individ-350

ual points, with red circles denoting data from 1969 and blue triangles351

from 2019. The national averages for each year are shown by black mark-352

ers. Several key trends emerge from the figure. First, there is a clear353

positive association, indicating that states with higher degree of popula-354

tion aging consistently have a larger percentage of CDR65+. Second, in355

1969, there was considerable variation among states in both the propor-356

tion of elderly populations and the percentage of deaths occurring at ages357

65 and above. By 2019, this variation had notably narrowed, reflecting358

widespread population aging across all states and a uniformly higher con-359

centration of deaths among older individuals. Third, across both years, the360

percentage of deaths among older adults remained consistently higher for361

females than for males, highlighting women’s longevity advantage and the362

greater concentration of their deaths at older ages.363



Figure 7: Population aging and the percentage of CDR65+ over
CDRtotal by states in 1969 and 2019

Note: The percentage of x-axis equals to [(N65+/Ntotal) · 100%], where N denotes the population
size. The percentage of y-axis equals to [(CDR65+/CDRtotal) · 100%]. Individual states appear as
red circles (1969) or blue triangles (2019), with national averages in black.
Source: Authors’ calculation based on USMDB (2024).

Using the Kitagawa decomposition, an age group can substantially af-364

fect a CDR difference if it shows large differences between the state and365

the U.S. in either its population share or its mortality rate. However, mor-366

tality at the old-ages is higher than at middle-ages according to the distri-367

bution of age-st-death, so the CDR is always going to be strongly affected368

by population composition gaps at old age. And in an aging population,369

the effect of mortality gaps should be larger when the gaps occur at older370

ages than middle age.371

Therefore, we separate CDR65+ gaps between states and the U.S. into372

contributions due to differences in age-specific mortality rates (top row),373

and those due to differences in population aging (bottom row) in 2019 by374

gender, shown in Figure 8. Here, purple indicates a positive contribution,375



and green indicates a negative contribution, with darker shading represent-376

ing larger magnitudes. For illustration, in 2019, the CDR65+ for females377

was 5.28 per thousand in Texas compared to 7.02 per thousand nationally,378

resulting in a gap of -1.74. This gap can be decomposed into a differ-379

ence due to age-specific mortality rates (0.30, contributing -17%) and a380

difference due to the population share aged 65 and older (-2.04, contribut-381

ing -117%). The numbers indicate that while Texas has slightly higher382

mortality rates for elderly females than the national average, its smaller383

proportion of elderly residents (younger population age structure) drives384

the lower CDR65+ value.385

As we might expect, in most states, differences in the share of the el-386

derly population account for a larger portion of the differences in CDR65+387

than differences in old-age mortality levels themselves, while the role of388

mortality differences has also become increasingly important over time (as389

confirmed by Figures A-8).390

Notably, the contribution from population aging is particularly pro-391

nounced in southern states. This might reflect the domestic migration of392

elderly populations who tend to move from the colder areas in the North-393

east and the Midwest to warmer southern states. For instance, Florida has394

gained the largest numbers of domestic migrants aged 65 years and older395

between 2015 and 2019 (Mateyka and He 2022).396

An interesting gender-specific phenomenon emerges in states such as397

Arizona: for females, lower CDR65+ compared to the national average398

is mainly driven by lower mortality rates despite slightly higher elderly399

population shares, while for males, higher CDR65+ reflects larger elderly400

population shares despite lower mortality rates. Taking Arizona in 2019401

as an example, females show a negative contribution from differences in402

age structure but a positive contribution from differences in mortality dif-403

ferences. But males display the opposite: a positive contribution from404

differences in age structure and a negative contribution from differences in405

mortality. These patterns become clear when examining the specific num-406

bers. For females, the CDR65+ was 6.64 per thousand compared to 7.02407

nationally, yielding a gap of -0.38. This gap decomposes into a difference408



due to age-specific mortality rates (-0.45, contributing 118%) and popu-409

lation share aged 65+ (0.07, contributing -18%). Thus, the lower female410

CDR65+ in Arizona compared to U.S. was primarily driven by lower mor-411

tality rates despite slightly higher elderly population shares. Conversely,412

for males, Arizona’s CDR65+ was 6.61 per thousand versus 6.31 nation-413

ally, resulting in a gap of 0.30. This gap decomposes into mortality rate414

differences (-0.66, contributing 322%) and population share differences415

(0.96, contributing -222%). Therefore, Arizona’s higher male CDR65+416

compared to U.S. was attributed to substantially higher elderly population417

proportions, despite lower mortality rates. These findings align with e0418

decomposition results, as e0 in Arizona exceeded the national average for419

both sexes in 2019, with positive contributions from the 65+ age group.420

Figure 8: The decomposition of CDR65+ gaps between
individual states and the U.S., 2019

Source: Authors’ calculation based on USMDB (2024).

4.2.4 How mortality differences by age groups drive state-level421

mortality gaps422

Here we summarize how age-specific mortality differences, and their changes423

from 1969 to 2019, have shaped state-level differences and trends in the424



three metrics: e0, V (6), and CDR. Child mortality has played a dimin-425

ishing role in recent decades, while differences in mortality at middle and426

older ages, along with variation in population age structures, have become427

the primary drivers of differences between states (The pattern of change in428

the metrics is detailed in Figures A-5, A-7, and A-8).429

Leading states maintained and widened their edge in mortality met-430

rics. California, for example, is “better” than the U.S. in e0, V (6), and431

CDR in 1969 and 2019. Higher life expectancy primarily results from432

significant mortality reductions at midlife and older ages; lower lifespan433

variance reflects persistently low mortality at middle ages; and low CDR434

comes from lower age-specific mortality rates combined with a younger435

population structure.436

In contrast, initially disadvantaged states continued to lag, facing mor-437

tality burdens at middle and older ages. A typical example is West Vir-438

ginia, which experienced minimal gains in life expectancy at birth, ris-439

ing crude death rates, and increased lifespan variance. Midlife mortal-440

ity significantly contributed to the e0 gap between West Virginia and the441

U.S. in 1969, shifting to poorer old age mortality in 2019, possibly due to442

variation in health care. A consistently higher lifespan variance resulted443

mainly from the higher mortality rates among middle-aged groups, largely444

attributable to causes such as opioid overdoses (Merino et al. 2019). The445

higher crude death rates in West Virginia in both 1969 and 2019 resulted446

from a combination of higher mortality rates and a larger proportion of447

older individuals. A similar and increasing mortality disadvantage is found448

in parts of Appalachia and the South, where midlife health outcomes have449

stagnated or worsened.450

There are also mixed situations. For instance, Mississippi had lower e0451

and higher V (6) compared to the U.S. average, although its own lifespan452

variance slightly decreased over time. Nevertheless, we find that reducing453

midlife mortality in Mississippi should remain a key policy target for nar-454

rowing lifespan inequality. Note also that females in some states, such as455

Vermont, performed “better” than the U.S. average in terms of a decreasing456

V (6) and an increasing e0, yet experienced higher and rising crude death457



rates due to faster population aging. The pattern exhibited by a given state458

depends on the metric used, highlighting the importance of our decompo-459

sitions in uncovering the significance of age-specific mortality change.460

5. Conclusion461

Our study used three complementary mortality indicators, life expectancy462

at birth, lifespan variance, and crude death rate, to reveal distinct conse-463

quences of state-level mortality gaps (compared with the United States)464

from 1969 to 2019. We used innovative decomposition methods to deter-465

mine how age-specific mortality gaps influenced the three indicators at the466

state-level.467

We examined differences over time between states and the U.S. in468

e0, V (6), and CDR. Some states had relatively high life expectancy but469

elevated crude death rates due to older population structures. Other states470

had life expectancies comparable to the U.S. but higher lifespan variability,471

mainly due to premature deaths, although there is also an effect of longer472

lives in some states. Despite overall progress in mortality, southeastern473

states, including Mississippi and West Virginia, continued to exhibit sig-474

nificant inequalities in life expectancy, lifespan variance and CDR gaps.475

Our decompositions demonstrated that young ages (0-5 years) consis-476

tently contributed minimally to state-level differences in any metric. How-477

ever the contributions of mortality gaps at middle (6-64) and older (65+)478

ages shaped these differences, sometimes increasingly over time. South-479

eastern states, such as Mississippi and West Virginia, persistently showed480

the dual burden of rising midlife and old-age mortality. Population age481

structure differences explained a substantial portion of state-level differ-482

ences in crude death rates, particularly driven by older age groups.483

Our analysis and decomposition methods disentangle the effects of484

age-specific mortality differences, the sensitivity of mortality indicators to485

proportional changes in mortality rates, and population age structure. Age-486

specific differences in mortality rates may be easy to measure but their487



consequences require the analyses we do here. The contribution of any488

age group to an overall mortality indicator can stem from large differences489

in mortality rates, high sensitivity of the indicator to even small changes,490

or shifts in population age structure. By identifying these key drivers of491

mortality differences, the study help ensure that policy responses can be492

targeted appropriately – to not only increase how long people live, but also493

reduce inequalities in lifespan and manage the burden of mortality in each494

state.495
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Appendices681

Detailed derivations of variance of age-at-death682

Focus on the variance of age-at-death after age a denoted as V (a), so for683

a random age at death T we have684

V (a) = Var[T ] = E[T 2]− (E[T ])2, (10)

where E denotes the expected value and T ≥a. The moments are685

E[T 2] =
2

l(a)

∫ ∞

a

dx xl(x) + a2, (11)

E[T ] = a+ e(a) = a+
1

l(a)

∫ ∞

a

dx l(x), (12)

and so686

V (a) =
2

l(a)

∫ ∞

a

dx xl(x) − [e(a)]2 − 2ae(a). (13)

For state i define the proportional change from U.S. mortality as δi(x), as687

we did in equation (2). Then for state i, the cumulative mortality Mi(x)688

and the survival probability li(x) from birth to age x of are respectively689

Mi(x) =

∫ x

0

ds µi(s) = Mu(x) +

∫ x

0

ds δi(s)µu(s), (14)

li(x) = exp[−Mi(x)] = exp[−Mu(x)−
∫ x

0

ds δi(s)µu(s)]. (15)

For state i, the conditional survival probability from age a to age x is690



(to linear order in δi(x)),691

li(x)

li(a)
≃ lu(x)

lu(a)
[1−

∫ x

a

ds δi(s)µu(s)], (16)

and so692

ei(a) =

∫ ∞

a

dx
li(x)

li(a)
≃ eu(a)−

∫ ∞

a

dx
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s), (17)

which implies that the difference in e(a) between state i and the U.S. av-693

erage is694

∆e(a) = −
∫ ∞

a

dx
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s). (18)

Thus the variance of age-at-death after age a for state i is695

V i(a) =
2

li(a)

∫ ∞

a

dx xli(x) − [ei(a)]2 − 2aei(a). (19)

Denote the terms in the above line as696

A =
2

li(a)

∫ ∞

a

dx xli(x), B = [ei(a)]2, C = 2aei(a).

Using our expansions,697

A =
2

lu(a)

∫ ∞

a

dx xlu(x)− 2

∫ ∞

a

dx x
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s), (20)

698

B ≃ [eu(a)]2 − 2eu(a)

∫ ∞

a

dx
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s), (21)

699



C = 2aeu(a)− 2a

∫ ∞

a

dx
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s)], (22)

Adding these we find700

V i(a) = V u(a) + 2

∫ ∞

a

dx [eu(x) + a− x]
lu(x)

lu(a)

∫ x

a

ds δi(s)µu(s). (23)

The entropy-like quantity and the sensitivity of e0 and V (a)701

The age-pattern of contributions to e0 gaps in Figure 1b shows that old702

ages play a major role. That observation marches with a simpler and well-703

known analysis: suppose that mortality in state i differs from U.S. mortal-704

ity by the same proportion ki at every age. Then705

δi(x) = ki, → ei0 = eu0 − ki

∫ ∞

0

dx gu(x), (24)

where gu(x) is an entropy-like quantity (Fernandez and Beltrán-Sánchez706

2015; Liang, Guo, and Tuljapurkar 2023)707

gu(x) = −lu(x) log lu(x). (25)

Thus a proportional change ki in mortality at every age changes eu0 by an708

amount proportional to gu(x) at age x (Vaupel 1986; Goldman and Lord709

1986; Keyfitz, Caswell et al. 2005). For modern industrialized countries,710

the entropy-like quantity also shows that old ages matter a great deal (see711

Figure A-1a).712



Figure A-1: The sensitivity of e0 and V (6) of U.S. females in
1969 and 2019

(a) (b)

Note: (a) The sensitivity of eu0 to proportional changes in µu(x). (b) The sensitivity of V u(6) to
proportional changes in µu(x)
Source: Authors’ calculation based on USMDB (2024).

Similarly, when proportional changes in age-specific mortality rates713

are uniform across ages, and this results in a change in the variance of714

age-at-death above age a, given by:715

dV (a)

d lnµ(x)
= 2

∫ ∞

a

dx [eu(x) + a− x]hu(x), (26)

where hu(x) is another entropy-like function, similar in structure to the716

sensitivity of life expectancy, and defined as:717

hu(x) = − lu(x)

lu(a)
log

lu(x)

lu(a)
. (27)

Figure A-1b illustrates the sensitivity of V (a) for U.S. females in 1969718

and 2019. Both curves show a “young-old threshold” age T (a): at ages719



below the threshold, declines in mortality will reduce the variance (by720

compressing the distribution of deaths), whereas mortality decline at ages721

above the threshold, increase the variance (by widening the distribution of722

deaths).723



Supplementary figures and table724

Figure A-2: The mortality gaps between individual states and the
U.S. in 1969

(a) Gaps in e0

(b) Percentage differences in V (6)

(c) Gaps in CDR

Source: Authors’ calculation based on USMDB (2024).



Figure A-3: Mortality dynamics of each state and the U.S., from
1969 to 2019

Note: The changes of mortality indicators here are calculated by values in 2019 minus values in
1969. Each label, the state abbreviations, represents a specific state or the overall US average. The
color of each label indicates the direction of changes in V (6): green represents a decrease in V (6),
while purple represents an increase in V (6). The magnitude of V (6) changes is reflected in the font
size of the state abbreviations. The horizontal axis indicates changes in e0, the vertical axis
represents changes in the CDR.
Source: Authors’ calculation based on USMDB (2024).



Figure A-4: The range of e0,V (6), and CDR of U.S. states from
1969 to 2019

Note: The shaded regions illustrate the range of mortality indicator values across states, where the
upper boundary is the highest observed state-level value and the lower boundary is the lowest one.
The solid black line denotes the U.S. national value.
Source: Authors’ calculation based on USMDB (2024).



Figure A-5: The magnitude of contribution from age groups to e0
gaps between individual states and the U.S. in 1969 and
2019

Note: Different shades indicate the magnitude of contributions to e0 gaps: slight (<25%), moderate
(25%–75%), and strong (>75%).
Source: Authors’ calculation based on USMDB (2024).



Figure A-6: The young-old threshold age T (6) of the U.S. from
1969 to 2019

Source: Authors’ calculation based on USMDB (2024).



Figure A-7: The percentage differences of V (6) between
individual states and the decompositions in 1969 and
2019

Note: The percentage differences in V (6) between individual states and the U.S. are calculated as
[V i(6)−V u(6)]/V u(6), and the differences from early and late inequality are also divided by V u(6).
Source: Authors’ calculation based on USMDB (2024).

Figure A-8: The decomposition for female crude death rate gaps
between individual states and the U.S. in 1969 and 2019

Note: Different shades indicate the magnitude of contributions to CDR gaps: slight (<25%),
moderate (25%–75%), and strong (>75%).
Source: Authors’ calculation based on USMDB (2024).



Table A-1: Distribution of the values of δi(x) · µu(x)

Mean SD Minimum 1st percentile Median 99th percentile Maximum

Female -0.00047 0.02080 -0.57795 -0.07157 -0.00003 0.06235 0.29490
Male -0.00018 0.02235 -0.52204 -0.07806 -0.00003 0.06798 0.35331

Note: Values of δi (x) · µu(x) are calculated across states, years, sexes, and ages. The sex-specific
distribution is provided to validate the assumption underlying the linear Taylor expansion, namely that
δi (x) · µu(x) ≪ 1.


	Introduction
	Data source
	Methods
	Sensitivity of life expectancy at birth and variance of age-at-death
	Life expectancy at birth
	Variance of age-at-death
	Summary of the sensitivity approach 

	Crude death rate and Kitagawa decomposition

	Results
	Trends in mortality dynamics across U.S. states
	Age-specific contribution to mortality gaps
	Life expectancy at birth
	Variance of age-at-death
	Crude death rate
	How mortality differences by age groups drive state-level mortality gaps


	Conclusion
	References
	Appendix

