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Introduction 
 
Global temperatures are rising at rates never before observed. The 10 warmest years in record 
have all occurred since 2010, with the last nine years ranking as the warmest years on record 
(NOAA, 2022). For the United States, nine of the 10 warmest years on record have occurred 
since 1998, and 2012 and 2016 were the two warmest years on record.  The annual number of 
heat waves is now twice that in the 1980s, and the heat wave season is more than 3 times as long 
as it was in the 1960s (Klingelhofer, 2023). These rising temperatures carry consequences across 
multiple domains of well-being, as they increase the risk of other types of disasters such as 
drought and wildfire, and pose threats to energy and agricultural systems (Perera et al., 2020; 
Sun et al., 2019). Exposure to extreme heat also substantially affects human health, in both the 
short and long term (Ebi et al., 2021). 
 
The burden of higher temperatures and extreme heat is not evenly distributed across 
communities within cities. Research has found that racial/ethnic and socioeconomic disparities in 
exposure are particularly robust across different US contexts, with greater exposure in lower-
income and nonwhite communities, while findings related to age and disability are mixed 
(Dialesandro et al., 2021; Lindsay, 2023). Much of this research uses neighborhoods as the 
ecological units shaping these disparities, which aligns with the dominant framework in urban 
research that identifies neighborhoods as independent institutions affecting resident health and 
well-being (Sampson, 2012). 
 
The neighborhood effects framework was broadened by the perspective that ecological features 
shaping spatial inequalities are spatially clustered (Morenoff et al., 2001). Geographic clustering 
indicates that the heat burden experienced in neighborhoods extends to their extra-local 
environments. This perspective aligns with urban heat island research which identifies clusters of 
neighborhoods within cities experiencing extreme heat events (Deilami et al., 2018). Here, 
temperature is not a discontinuous phenomenon that changes at neighborhood boundaries, but 
“spills” over to create a cluster of neighborhoods experiencing disproportionate levels of heat 
exposure. 
 
In the same way that temperature is not contained within neighborhood boundaries, people are 
also not confined to their residential settings, but travel to neighborhoods across their cities for 
work, school, errands and leisure. Prior work has shown that residents spend large proportions of 
time outside of their neighborhoods, this time is often spent in distal areas of the city, and 
residents of poor and minority neighborhoods travel about as widely across their cities as those 
of other groups (Brazil, 2020; Jones and Pebley, 2014; Wang et al., 2018). Much of this evidence 
comes from the rich literature on activity spaces, which shows that people spend a great deal of 
their day in activities occurring in places outside their home areas (Cagney et al., 2020). 
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Aggregating these individual trips up to the population level reveals a higher-order, urban 
network formed by large and consistent flows connecting neighborhoods both near and far.   
 
The implication of this higher-order neighborhood scale is that prior work may be misestimating 
exposure to extreme heat.  On the one hand, residents from higher temperature neighborhoods 
may be exposed to lower temperatures in the neighborhoods they travel to for daily routines. 
This is the perspective of the neighborhood effect averaging problem, which posits that taking 
people's daily mobility into account will lead to an overall tendency toward the mean exposure 
because exposure levels for people whose residence-based exposures are lower or higher than the 
mean exposure will tend toward the mean exposure (Kwan, 2018).  On the other hand, heat 
exposure may be similar or greater for residents burdened with high heat exposure in their 
residential settings. This may be the case if residents from disadvantaged/advantaged 
neighborhoods travel on average to similarly disadvantaged/advantaged neighborhoods (Brazil et 
al., 2024).  
 
Prior studies using geolocated cell phone pings, social media posts and job commuting to 
measure inter-city flows between neighborhoods have examined exposure to a variety of 
conditions in mobility networks, including crime, air pollution, tree canopy, poverty, 
segregation, and health outcomes (Brazil, 2022; Candipan et al., 2021; Levy et al., 2020; Moro et 
al., 2021; Wei et al., 2024). In this study, I add to this burgeoning literature by estimating 
average heat exposure in the network of neighborhoods linked via daily mobility flows. Using 
2018–2019 anonymized mobile phone data from SafeGraph, I construct neighborhood networks 
based on daily mobility flows for the 100 largest US metropolitan areas. I examine differences in 
neighborhood exposure to heat and its association with ecological conditions across three 
neighborhood scales: (1) the residential neighborhood; (2) the neighborhoods bordering the 
residential neighborhood; and (3) the non-residential and non-adjacent neighborhoods visited by 
residents. I then examine sociodemographic inequalities in exposure by comparing differences 
by neighborhood ethnoracial, socioeconomic disadvantage, age and disability composition.  
 
Data 
 
Mobility 
 

Mobility of residents between neighborhoods are based on the location pings of smart 
phone devices. A flow between neighborhoods i and j represent the number of trips originating 
from home neighborhood i visiting destination neighborhood j.  Cell phone location data rely on 
numerous smart phone apps and were aggregated by SafeGraph (SafeGraph, 2024). SafeGraph 
provides visit patterns for more than 40 million devices to more than 6 million points of interests. 
The dataset contains information on the daily number of pings in a destination block group and 
the residence block group locations of the pings. The analysis includes pings aggregated up to 
the tract level from November 2018 to November 2019, before the major impact of COVID-19 
on travel. 

I used SafeGraph data because it provides extensive spatial coverage, with almost all 
counties represented (Li et al., 2024). Furthermore, SafeGraph data are a widely used standard in 
large-scale studies of human mobility across many different areas including air pollution and 
COVID-19 modelling (Brazil, 2022; Marlow et al., 2021). The SafeGraph sample is not a perfect 
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representative subset of the population (Li et al., 2024).  Not everyone owns a cellphone, carries 
one with them, some use alternative forms of communication when travelling, such as burner 
phones, some people carry multiple devices, some devices are shared across multiple individuals, 
and some people carry a smart device only some of the time. Nevertheless, the empirical 
sampling rates in the sample panel are quantitatively close to the expected sampling rates from a 
large-N random sample (Squire, 2019; Noi et al., 2022).   
 
Temperature 
 
Land surface temperature data come from a nationwide dataset that I constructed with several co-
authors (Dialesandro et al. 2021).  The dataset is based on Landsat 8 Operational Land Imager 
(OLI) Tier 1 imagery downloaded from Google Earth Engine (GEE).  Using JavaScript-enabled 
GEE we processed these data to obtain at-sensor (or top-of-atmosphere (TOA)) radiance and 
surface reflectance. We then used TOA radiance and surface reflectance data to retrieve Land 
Surface Temperature (LST). Temperature recorded dates were selected for cloud-free periods 
(which provide the most accurate readings) in the summer season.  Similar to Dialesandro et. al 
(2021), I will explore three temperature scenarios. First, the number of extreme heat days in a 
given year. This was done by selecting the warmest days available between 2013 and 2018 that 
coincided with a cloud-free day of Landsat 8 OLI imagery capture. Second, the average summer 
day temperature based on the average of available Landsat scenes during the study period. Third, 
the average summer nighttime temperature.  
 
Neighborhood Sociodemographic Characteristics 
 
Data on census tract level demographic and socioeconomic characteristics will be drawn from 
the 2015-19 American Community Survey (ACS). I will collect data on population size, 
racial/ethnic composition (percent non-Hispanic white, non-Hispanic black, non-Hispanic Asian, 
Hispanic and other), age composition (% 65 years old and older) and disability prevalence.  
Consistent with prior research, I conduct a principal components analysis of the following 
neighborhood variables to measure neighborhood disadvantage: percentages of poverty, 
unemployment, single-headed households, public assistance receipt, adults without a high school 
diploma, adults with a bachelor’s degree or higher, and workers who are managers or 
professionals. 
 
Methods 
 
This study examines differences in neighborhood heat exposure levels across residential, 
adjacent and network neighborhoods. I run the following fixed-effects regression model to obtain 
estimates of heat exposure: 
 

𝐻𝑒𝑎𝑡!" =	𝛽# + 𝛽$𝑋!" + 𝛽%𝑃𝑜𝑝!" + 𝛼" + 𝜖!" 
 
where 𝐻𝑒𝑎𝑡!" is neighborhood measures of heat exposure at the residential, adjacent or network 
scale for neighborhood i in MSA k, and 𝑋!" is the set of sociodemographic variables described 
above. The parameter 𝛼" is a metro fixed effect, which controls for unobserved metro 
characteristics; and 𝑃𝑜𝑝!" controls for differences in resident total population. 
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I then examine neighborhood ethnoracial, socioeconomic disadvantage, age and disability 
differences in exposure to neighborhood heat exposure levels. For race/ethnicity, I calculate the 
gap in the predicted average exposure levels between white and Asian, Black, and Hispanic 
neighborhoods, and comparing the gaps across the three neighborhood scales.  I construct a 
categorical variable indicating whether neighborhood i in metro k is white, Black, Asian, 
Hispanic or other, with other containing neighborhoods that are either not at or above the 75th 
percentile in an ethnoracial group, or at or above more than one ethnoracial distribution. For 
socioeconomic disadvantage, age and disability, I keep the variables as continuous.  
 
Expected Findings 
 
Studies using cell phone pings, job commuting flows, and georeferenced social media posts to 
capture resident travel have found that neighborhoods are connected to other neighborhoods with 
similar levels of socioeconomic disadvantage, regardless of distance (Brazil et al., 2024; Moro et 
al., 2021; Wang et al., 2018). Other phenomena found to be correlated across neighborhood 
networks include air pollution levels, segregation, crime, and health outcomes including COVID-
19 and sexually transmitted diseases (Brazil, 2022; Candipan et al., 2021; Evans et al., 2023; 
Newmyer et al., 2022; Wang et al., 2018).  Given this prior evidence, I hypothesize that heat 
exposure levels will be equal or greater in the neighborhoods that residents travel to for daily 
routines compared to their residential and adjacent neighborhoods. Prior work has also shown 
that exposure to disadvantage is equal or greater for nonwhite network-based neighborhoods 
compared to their white counterparts (Brazil et al., 2024; Wang et al., 2018). As such, I 
hypothesis similar network inequalities for heat exposure. Given mixed findings for disability 
and age in residential-based studies of heat exposure inequality, I hypothesis mixed findings for 
heat when examining exposure at the network level for these groups. 
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