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Introduction 
 
Global temperatures have been increasing over time due to climate change, exerting far-reaching 
consequences on environmental and human systems (Hansen et al., 2022).  This trend is 
expected to continue, with extreme heat events also increasing in frequency and severity 
(Tuholske et al., 2021).  There is a large body of research which associates exposure to high 
temperatures to increases in mortality rates, several non-fatal health outcomes, including heat 
strokes, dehydration, and hospitalizations, and well-being measures, such as loss of labor 
productivity and decreased learning (Graff Zivin & Neidell, 2014; Heaviside et al., 2017; Park et 
al., 2020). 
 
Because built environments are commonly hotter than the natural (surrounding) environment, a 
phenomenon commonly referred to as the urban heat island (UHI) effect, cities have experienced 
the greatest increases in temperatures (Peng et al., 2012).  The UHI effect is not distributed 
evenly within a city; rather, higher temperatures are concentrated in neighborhoods characterized 
by concentrated socio-economic disadvantage, particularly in areas with higher proportions of 
non-white residents (Dialesandro et al., 2021; Hsu et al., 2021; Renteria et al., 2022). The UHI 
literature has examined these disparities according to the neighborhoods where households 
reside. For example, Hsu et al. (2021) find that the average person of color lives in a census tract 
with higher temperatures than non-Hispanic whites in all but 6 of the 175 largest urbanized areas 
in the United States.  However, residents spend large proportions of time outside of their 
residential settings, this time is often spent in distal areas of the city, and residents of poor and 
minority neighborhoods travel about as widely across their cities as those of other groups (Wang 
et al., 2019).  Accordingly, we hypothesize that measurement of heat exposure should 
incorporate the neighborhoods where people live, work, play, and otherwise spend time.  Prior 
work reveals that aggregating individual trips up to the population level reveals a higher-order, 
urban network formed by large and consistent flows connecting neighborhoods both near and far 
(Brazil et al., 2025).  Understanding the geographic burden of heat exposure must consider this 
higher-order, neighborhood network, because if residents spend significant time outside of their 
neighborhoods and travel to neighborhoods beyond those that are geographically adjacent, we 
are potentially misestimating exposure, and its inequality across racial/ethnic lines (Levy & 
Bonner, 2025; Sampson & Candipan, 2023). 
 
There may be notable differences in heat exposure between the neighborhoods people visit and 
their home neighborhoods based on variation in land use and socioeconomic environments. For 
example, residents of neighborhoods with lower temperatures may visit commercial and 
industrial areas with material properties that reflect less solar energy, and absorb and emit more 
of the sun’s heat, such as pavement, roofing, sidewalks, roads, buildings, and parking lots; there 
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may be lower tree canopy in the neighborhoods in which individuals with lower incomes reside 
and so they visit neighborhoods with higher tree canopy coverage for outdoor activities (Wang et 
al., 2021; Wei et al., 2024). These differences in visit patterns and purposes, along with 
socioeconomic disparities between neighborhoods, can contribute to substantial variation in 
temperatures even in relatively small geographic areas. Indeed, one study found that air pollution 
exposure also varies across the places where people spend time, and that residents from poor and 
minority neighborhoods travel to neighborhoods with more air pollution than do residents from 
nonpoor and white neighborhoods (Brazil, 2022). In contrast, there may be little to no difference 
in temperatures between residential and mobility-based neighborhoods. In this case, limited 
neighborhood networks, influenced by racial disparities in mobility, sustain heat inequities 
linked to socioeconomic disadvantages in the residential neighborhood (Candipan et al., 2021). 
 
In this study, we construct neighborhood networks based on daily mobility flows for the 100 
largest US metropolitan areas using 2018–2019 anonymized mobile phone data from SafeGraph. 
We examine differences in neighborhood exposure to summer temperatures across three 
neighborhood scales: (1) the residential neighborhood; (2) the neighborhoods bordering the 
residential neighborhood; and (3) the non-residential and non-adjacent neighborhoods visited by 
residents. We then examine ethnoracial and socioeconomic inequalities in exposure by 
comparing differences by neighborhood composition, and explore heterogeneity by Census 
region. 
 
Data 
 
Data was collected at the census tract level in the 100 largest metropolitan statistical areas 
(MSA) in the United States based on 2018 U.S. Office of Management and Budget MSA 
definitions and total population estimates. The 100 largest MSAs were chosen due to their 
greater availability of cell phone data. Census tract was used because it is the most common 
scale for measuring neighborhoods in social science research and provides lower uncertainty of 
mobility and socioeconomic characteristics relative to lower scales such as the block group 
(Sampson, 2012).  

Mobility flows 

Mobility of residents between neighborhoods are based on the location pings of smart phone 
devices. A flow between neighborhoods i and j represent the number of trips originating from 
home neighborhood i visiting destination neighborhood j.  Cell phone location data rely on 
numerous smart phone apps and were aggregated by SafeGraph (SafeGraph, 2024). SafeGraph 
provides visit patterns for more than 40 million devices from multiple cell phone companies to 
more than 6 million points of interests. Here, a trip is represented as a cell phone device being 
pinged when an application is in use in a location other than its home neighborhood, where 
“home” is the location where the mobile device is detected most at night (from 18:00 to 07:00) 
over a 6-wk period. The data do not uniquely identify individuals but rather provide an 
anonymized overview of their aggregated movement to protect individual privacy while still 
providing insights into broader patterns of human mobility. The dataset contains information on 
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the daily number of pings in a destination block group and the residence block group locations of 
the pings. The data is not publicly available but is purchased through a paid subscription. The 
analysis includes pings aggregated up to the tract level from November 2018 to November 2019, 
before the major impact of COVID-19 on travel. SafeGraph did not collect weekly patterns data 
before 2018. Prior work has shown that SafeGraph-based mobility patterns are broadly 
consistent before and after the peak of the COVID-19 pandemic, and with patterns for multiple 
years of other forms of mobility data (e.g., geolocated tweets), demonstrating consistency in 
mobility patterns observed with a single year of SafeGraph data (Levy et al., 2020; Marlow et al., 
2023).  

We used SafeGraph data because it provides extensive spatial coverage, with almost all counties 
represented (Li et al., 2024). Furthermore, SafeGraph data are a widely used standard in large-
scale studies of human mobility across many different areas including air pollution, crime and 
COVID-19 modelling (Brazil, 2022; Levy et al., 2022). The SafeGraph sample is not a perfect 
representative subset of the population (Li et al., 2024).  Not everyone owns a cellphone, carries 
one with them, some use alternative forms of communication when travelling, such as burner 
phones, some people carry multiple devices, some devices are shared across multiple individuals, 
and some people carry a smart device only some of the time. Nevertheless, the empirical 
sampling rates in the sample panel are quantitatively close to the expected sampling rates from a 
large-N random sample (Squire, 2019; Noi et al., 2022).   
 
Temperature 
 
Historical daily ambient temperature data (in degrees Fahrenheit) was obtained from the 
gridMET dataset, which provides validated and publicly available daily surface fields of 
maximum temperature and minimum temperature covering the contiguous United States at a 
resolution of ∼ 4 km (1/24th degree). It integrates climate data from the Parameter-elevation 
Regressions on Independent Slopes Model (PRISM) with data from the National Land Data 
Assimilation System (NLDAS) to generate spatiotemporally continuous surface meteorological 
forcings (Abatzoglou, 2013).  Our heat exposure variable is the census tract mean maximum 
temperature in the summer months (June-September) of 2018 and 2019.  

We construct three variables capturing heat exposure across the following scales: (1) 
mean maximum summer temperature in neighborhood i (Residential); (2) the average mean 
maximum summer temperature in neighborhood i's spatially adjacent neighbors (Adjacent), 
where neighbor is sharing a border or vertex; and (3) the average mean maximum summer 
temperature in a neighborhood’s mobility flow network weighted by the proportion of trips to 
each MSA neighborhood (Network).  Visits to the same and adjacent neighborhoods are 
excluded, and thus the corresponding cell values are populated with zeros.   We restrict 
adjacency and network connections to neighborhoods within the same MSA.  

Sociodemographic characteristics 

Data on census tract level demographic and socioeconomic characteristics were drawn from the 
American Community Survey (ACS), 5-year 2015-2019 estimates. Ethnoracial data capture 
resident percent composition based on the following categories: Non -Hispanic white, non-
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Hispanic Black, non-Hispanic Asian, Hispanic.  Consistent with prior research, I conduct a 
principal components analysis of the following neighborhood variables to measure neighborhood 
disadvantage: percentages of poverty, unemployment, single-headed households, public 
assistance receipt, adults without a high school diploma, adults with a bachelor’s degree or 
higher, and workers who are managers or professionals (Levy et al., 2020).  We also include log 
population size, percentage of household without a private automobile, percent of residents over 
65 years old, and percent of residents with a physical disability. 
 
Methods 
 
We estimate heat exposure across residential, adjacent and network scales using spatial error 
regression models of the following form: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑘𝑘 + 𝜆𝜆𝜆𝜆𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖   (1) 

where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 represents mean maximum summer temperature for neighborhood i 
and MSA k at the residential, adjacent and network scales as described above, 𝜇𝜇𝑖𝑖𝑖𝑖 is spatially 
autocorrelated error term and W is a row-standardized spatial weights matrix based on Queen 
contiguity. We predict heat exposure with MSA dummy variables 𝛼𝛼𝑘𝑘 and a vector of covariates 
(𝑋𝑋𝑖𝑖𝑖𝑖). Percent Black and percent Hispanic were included in Equation 1. Including percent white 
introduced high multicollinearity. 

We next examine ethnoracial and SES differences in heat exposure across residential, adjacent 
and network scales. We run models including percent Black, Hispanic and white, separately. We 
also examined neighborhood racial and socioeconomic intersectional disparities in heat exposure 
risk. Specifically, we ran the same fixed-effects model specified above but interacted the SES 
indicator with each race/ethnicity variable.  
 
Results 
 
Figure 1 presents regression-adjusted mean summer temperatures with 95% confidence intervals 
at the residential, adjacent and network scales. The results indicate that heat exposure is similar 
across all three scales. Mean summer temperatures in the residential environment is slightly 
higher at 86.7 degrees. Heat exposure in its adjacent areas and the neighborhoods it is connected 
to via daily mobility flows are slightly lower at 84.5 and 85.8 degrees, respectively.  
 
Figure 2 shows predicted mean summer temperatures and 95% confidence intervals by percent 
White, Black and Hispanic. We make comparisons between residential and network trends.  
Regression coefficients for percent White and Hispanic are statistically significant at standard 
thresholds, with a greater percent White associated with lower temperatures and greater percent 
Hispanic associated with higher temperatures at both residential and network scales. However, 
while the slope is smaller at the network scale for percent White, it is greater for percent 
Hispanic, indicating a reduced heat exposure advantage for White neighborhoods and a greater 
disadvantage for Hispanic neighborhoods in their network of neighborhoods. Figure 2 also 
indicates a small decrease in temperature with greater percent Black at both scales; however, the 
slopes are not statistically significant. 
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Figure 3 shows the relationship between socioeconomic disadvantage and heat exposure. Greater 
neighborhood socioeconomic disadvantage is associated with greater heat exposure at the 
network scale, with a statistically significant slope coefficient. In contrast, greater socioeconomic 
disadvantage exhibits no association with summer temperature in the residential neighborhood. 
 
Figure 4 presents predicted summer temperatures by racial/ethnic composition interacted with 
whether a neighborhood is poor or not poor, where poor is defined as percent poverty greater 
than 30%. Here, we find that the positive relationship between percent Hispanic and summer 
temperature is present in both poor and nonpoor neighborhoods. In contrast, the negative 
relationship between percent White and summer temperature is true only for non poor 
neighborhoods. Percent White in poor neighborhoods exhibits no association with summer 
temperature in the residential and network environments. Percent Black shows no association at 
both scales. 
 
Figure 5 shows racial/ethnic results broken down by Census region (Midwest, Northeast, South 
and West). There is a positive relationship between percent Hispanic and summer temperature at 
the residential and network scales across all regions except the Midwest, where no relationship 
exists. The negative relationship between percent White and summer temperature appears in the 
South and Northeast, but not in the West and Midwest. Black composition exhibits contrasting 
regional results. Percent Black is positively associated with summer temperature in the 
Northeast, negatively associated in the West, and shows no association in the Midwest and 
South. 
 
Conclusion  
 
The results indicate that levels of heat exposure in the residential neighborhood extends to the 
neighborhoods that residents travel to for daily routines. Mean summer temperature in the 
residential neighborhood is 86.7 degrees. In comparison, mean summer temperature in the 
network of neighborhoods based on mobility flows is slightly lower at 85.8.  
 
We also find that documented racial/ethnic disparities in heat exposure at the residential scale 
extend to the network scale. Neighborhoods with a greater White composition are exposed to 
lower temperatures while neighborhoods with a greater presence of Hispanic residents 
experience higher temperatures. This heat disparity also applies to the neighborhoods that White 
and Hispanic neighborhoods are connected to based on where their residents travel to for school, 
work and leisure. We also find socioeconomic disparities in heat exposure, but only at the 
network scale: socioeconomic disadvantage is positively associated with higher temperatures at 
the network scale, but shows no association at the residential level. 
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Figures 
 
Figure 1: Regression-adjusted estimates and 95% confidence intervals of mean summer 
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential), 
adjacent neighborhoods (adjacent), and the nonadjacent neighborhoods that residents visit 
(network) 
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Figure 2: Regression-adjusted estimates and 95% confidence intervals of mean summer 
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the 
nonadjacent neighborhoods that residents visit (network) by percent racial/ethnic composition. 
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Figure 3: Regression-adjusted estimates and 95% confidence intervals of mean summer 
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the 
nonadjacent neighborhoods that residents visit (network) by socioeconomic disadvantage. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 9 

Figure 4: Regression-adjusted estimates and 95% confidence intervals of mean summer 
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the 
nonadjacent neighborhoods that residents visit (network) by racial/ethnic composition and 
poverty status. 
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Figure 5: Regression-adjusted estimates and 95% confidence intervals of mean summer 
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the 
nonadjacent neighborhoods that residents visit (network) by racial/ethnic composition and 
Census region. 
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