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Introduction

Global temperatures have been increasing over time due to climate change, exerting far-reaching
consequences on environmental and human systems (Hansen et al., 2022). This trend is
expected to continue, with extreme heat events also increasing in frequency and severity
(Tuholske et al., 2021). There is a large body of research which associates exposure to high
temperatures to increases in mortality rates, several non-fatal health outcomes, including heat
strokes, dehydration, and hospitalizations, and well-being measures, such as loss of labor
productivity and decreased learning (Graff Zivin & Neidell, 2014; Heaviside et al., 2017; Park et
al., 2020).

Because built environments are commonly hotter than the natural (surrounding) environment, a
phenomenon commonly referred to as the urban heat island (UHI) effect, cities have experienced
the greatest increases in temperatures (Peng et al., 2012). The UHI effect is not distributed
evenly within a city; rather, higher temperatures are concentrated in neighborhoods characterized
by concentrated socio-economic disadvantage, particularly in areas with higher proportions of
non-white residents (Dialesandro et al., 2021; Hsu et al., 2021; Renteria et al., 2022). The UHI
literature has examined these disparities according to the neighborhoods where households
reside. For example, Hsu et al. (2021) find that the average person of color lives in a census tract
with higher temperatures than non-Hispanic whites in all but 6 of the 175 largest urbanized areas
in the United States. However, residents spend large proportions of time outside of their
residential settings, this time is often spent in distal areas of the city, and residents of poor and
minority neighborhoods travel about as widely across their cities as those of other groups (Wang
et al., 2019). Accordingly, we hypothesize that measurement of heat exposure should
incorporate the neighborhoods where people live, work, play, and otherwise spend time. Prior
work reveals that aggregating individual trips up to the population level reveals a higher-order,
urban network formed by large and consistent flows connecting neighborhoods both near and far
(Brazil et al., 2025). Understanding the geographic burden of heat exposure must consider this
higher-order, neighborhood network, because if residents spend significant time outside of their
neighborhoods and travel to neighborhoods beyond those that are geographically adjacent, we
are potentially misestimating exposure, and its inequality across racial/ethnic lines (Levy &
Bonner, 2025; Sampson & Candipan, 2023).

There may be notable differences in heat exposure between the neighborhoods people visit and
their home neighborhoods based on variation in land use and socioeconomic environments. For
example, residents of neighborhoods with lower temperatures may visit commercial and
industrial areas with material properties that reflect less solar energy, and absorb and emit more
of the sun’s heat, such as pavement, roofing, sidewalks, roads, buildings, and parking lots; there
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may be lower tree canopy in the neighborhoods in which individuals with lower incomes reside
and so they visit neighborhoods with higher tree canopy coverage for outdoor activities (Wang et
al., 2021; Wei et al., 2024). These differences in visit patterns and purposes, along with
socioeconomic disparities between neighborhoods, can contribute to substantial variation in
temperatures even in relatively small geographic areas. Indeed, one study found that air pollution
exposure also varies across the places where people spend time, and that residents from poor and
minority neighborhoods travel to neighborhoods with more air pollution than do residents from
nonpoor and white neighborhoods (Brazil, 2022). In contrast, there may be little to no difference
in temperatures between residential and mobility-based neighborhoods. In this case, limited
neighborhood networks, influenced by racial disparities in mobility, sustain heat inequities
linked to socioeconomic disadvantages in the residential neighborhood (Candipan et al., 2021).

In this study, we construct neighborhood networks based on daily mobility flows for the 100
largest US metropolitan areas using 2018-2019 anonymized mobile phone data from SafeGraph.
We examine differences in neighborhood exposure to summer temperatures across three
neighborhood scales: (1) the residential neighborhood; (2) the neighborhoods bordering the
residential neighborhood; and (3) the non-residential and non-adjacent neighborhoods visited by
residents. We then examine ethnoracial and socioeconomic inequalities in exposure by
comparing differences by neighborhood composition, and explore heterogeneity by Census
region.

Data

Data was collected at the census tract level in the 100 largest metropolitan statistical areas
(MSA) in the United States based on 2018 U.S. Office of Management and Budget MSA
definitions and total population estimates. The 100 largest MSAs were chosen due to their
greater availability of cell phone data. Census tract was used because it is the most common
scale for measuring neighborhoods in social science research and provides lower uncertainty of
mobility and socioeconomic characteristics relative to lower scales such as the block group
(Sampson, 2012).

Mobility flows

Mobility of residents between neighborhoods are based on the location pings of smart phone
devices. A flow between neighborhoods i and j represent the number of trips originating from
home neighborhood i visiting destination neighborhood j. Cell phone location data rely on
numerous smart phone apps and were aggregated by SafeGraph (SafeGraph, 2024). SafeGraph
provides visit patterns for more than 40 million devices from multiple cell phone companies to
more than 6 million points of interests. Here, a trip is represented as a cell phone device being
pinged when an application is in use in a location other than its home neighborhood, where
“home” is the location where the mobile device is detected most at night (from 18:00 to 07:00)
over a 6-wk period. The data do not uniquely identify individuals but rather provide an
anonymized overview of their aggregated movement to protect individual privacy while still
providing insights into broader patterns of human mobility. The dataset contains information on



the daily number of pings in a destination block group and the residence block group locations of
the pings. The data is not publicly available but is purchased through a paid subscription. The
analysis includes pings aggregated up to the tract level from November 2018 to November 2019,
before the major impact of COVID-19 on travel. SafeGraph did not collect weekly patterns data
before 2018. Prior work has shown that SafeGraph-based mobility patterns are broadly
consistent before and after the peak of the COVID-19 pandemic, and with patterns for multiple
years of other forms of mobility data (e.g., geolocated tweets), demonstrating consistency in
mobility patterns observed with a single year of SafeGraph data (Levy et al., 2020; Marlow et al.,
2023).

We used SafeGraph data because it provides extensive spatial coverage, with almost all counties
represented (Li et al., 2024). Furthermore, SafeGraph data are a widely used standard in large-
scale studies of human mobility across many different areas including air pollution, crime and
COVID-19 modelling (Brazil, 2022; Levy et al., 2022). The SafeGraph sample is not a perfect
representative subset of the population (Li et al., 2024). Not everyone owns a cellphone, carries
one with them, some use alternative forms of communication when travelling, such as burner
phones, some people carry multiple devices, some devices are shared across multiple individuals,
and some people carry a smart device only some of the time. Nevertheless, the empirical
sampling rates in the sample panel are quantitatively close to the expected sampling rates from a
large-N random sample (Squire, 2019; Noi et al., 2022).

Temperature

Historical daily ambient temperature data (in degrees Fahrenheit) was obtained from the
gridMET dataset, which provides validated and publicly available daily surface fields of
maximum temperature and minimum temperature covering the contiguous United States at a
resolution of ~ 4 km (1/24th degree). It integrates climate data from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM) with data from the National Land Data
Assimilation System (NLDAS) to generate spatiotemporally continuous surface meteorological
forcings (Abatzoglou, 2013). Our heat exposure variable is the census tract mean maximum
temperature in the summer months (June-September) of 2018 and 2019.

We construct three variables capturing heat exposure across the following scales: (1)
mean maximum summer temperature in neighborhood i (Residential); (2) the average mean
maximum summer temperature in neighborhood i's spatially adjacent neighbors (Adjacent),
where neighbor is sharing a border or vertex; and (3) the average mean maximum summer
temperature in a neighborhood’s mobility flow network weighted by the proportion of trips to
each MSA neighborhood (Network). Visits to the same and adjacent neighborhoods are
excluded, and thus the corresponding cell values are populated with zeros. We restrict
adjacency and network connections to neighborhoods within the same MSA.

Sociodemographic characteristics

Data on census tract level demographic and socioeconomic characteristics were drawn from the
American Community Survey (ACS), 5-year 2015-2019 estimates. Ethnoracial data capture
resident percent composition based on the following categories: Non -Hispanic white, non-



Hispanic Black, non-Hispanic Asian, Hispanic. Consistent with prior research, I conduct a
principal components analysis of the following neighborhood variables to measure neighborhood
disadvantage: percentages of poverty, unemployment, single-headed households, public
assistance receipt, adults without a high school diploma, adults with a bachelor’s degree or
higher, and workers who are managers or professionals (Levy et al., 2020). We also include log
population size, percentage of household without a private automobile, percent of residents over
65 years old, and percent of residents with a physical disability.

Methods

We estimate heat exposure across residential, adjacent and network scales using spatial error
regression models of the following form:

Heat Exposure;, = o + [1Xix + ar + AWy + € (1)

where Heat Exposure;;, represents mean maximum summer temperature for neighborhood i
and MSA £ at the residential, adjacent and network scales as described above, p;, is spatially
autocorrelated error term and W is a row-standardized spatial weights matrix based on Queen
contiguity. We predict heat exposure with MSA dummy variables a; and a vector of covariates
(Xix). Percent Black and percent Hispanic were included in Equation 1. Including percent white
introduced high multicollinearity.

We next examine ethnoracial and SES differences in heat exposure across residential, adjacent
and network scales. We run models including percent Black, Hispanic and white, separately. We
also examined neighborhood racial and socioeconomic intersectional disparities in heat exposure
risk. Specifically, we ran the same fixed-effects model specified above but interacted the SES
indicator with each race/ethnicity variable.

Results

Figure 1 presents regression-adjusted mean summer temperatures with 95% confidence intervals
at the residential, adjacent and network scales. The results indicate that heat exposure is similar
across all three scales. Mean summer temperatures in the residential environment is slightly
higher at 86.7 degrees. Heat exposure in its adjacent areas and the neighborhoods it is connected
to via daily mobility flows are slightly lower at 84.5 and 85.8 degrees, respectively.

Figure 2 shows predicted mean summer temperatures and 95% confidence intervals by percent
White, Black and Hispanic. We make comparisons between residential and network trends.
Regression coefficients for percent White and Hispanic are statistically significant at standard
thresholds, with a greater percent White associated with lower temperatures and greater percent
Hispanic associated with higher temperatures at both residential and network scales. However,
while the slope is smaller at the network scale for percent White, it is greater for percent
Hispanic, indicating a reduced heat exposure advantage for White neighborhoods and a greater
disadvantage for Hispanic neighborhoods in their network of neighborhoods. Figure 2 also
indicates a small decrease in temperature with greater percent Black at both scales; however, the
slopes are not statistically significant.



Figure 3 shows the relationship between socioeconomic disadvantage and heat exposure. Greater
neighborhood socioeconomic disadvantage is associated with greater heat exposure at the
network scale, with a statistically significant slope coefficient. In contrast, greater socioeconomic
disadvantage exhibits no association with summer temperature in the residential neighborhood.

Figure 4 presents predicted summer temperatures by racial/ethnic composition interacted with
whether a neighborhood is poor or not poor, where poor is defined as percent poverty greater
than 30%. Here, we find that the positive relationship between percent Hispanic and summer
temperature is present in both poor and nonpoor neighborhoods. In contrast, the negative
relationship between percent White and summer temperature is true only for non poor
neighborhoods. Percent White in poor neighborhoods exhibits no association with summer
temperature in the residential and network environments. Percent Black shows no association at
both scales.

Figure 5 shows racial/ethnic results broken down by Census region (Midwest, Northeast, South
and West). There is a positive relationship between percent Hispanic and summer temperature at
the residential and network scales across all regions except the Midwest, where no relationship
exists. The negative relationship between percent White and summer temperature appears in the
South and Northeast, but not in the West and Midwest. Black composition exhibits contrasting
regional results. Percent Black is positively associated with summer temperature in the
Northeast, negatively associated in the West, and shows no association in the Midwest and
South.

Conclusion

The results indicate that levels of heat exposure in the residential neighborhood extends to the
neighborhoods that residents travel to for daily routines. Mean summer temperature in the
residential neighborhood is 86.7 degrees. In comparison, mean summer temperature in the
network of neighborhoods based on mobility flows is slightly lower at 85.8.

We also find that documented racial/ethnic disparities in heat exposure at the residential scale
extend to the network scale. Neighborhoods with a greater White composition are exposed to
lower temperatures while neighborhoods with a greater presence of Hispanic residents
experience higher temperatures. This heat disparity also applies to the neighborhoods that White
and Hispanic neighborhoods are connected to based on where their residents travel to for school,
work and leisure. We also find socioeconomic disparities in heat exposure, but only at the
network scale: socioeconomic disadvantage is positively associated with higher temperatures at
the network scale, but shows no association at the residential level.



Figures

Figure 1: Regression-adjusted estimates and 95% confidence intervals of mean summer
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential),
adjacent neighborhoods (adjacent), and the nonadjacent neighborhoods that residents visit
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Figure 2: Regression-adjusted estimates and 95% confidence intervals of mean summer
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the
nonadjacent neighborhoods that residents visit (network) by percent racial/ethnic composition.
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Figure 3: Regression-adjusted estimates and 95% confidence intervals of mean summer
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the
nonadjacent neighborhoods that residents visit (network) by socioeconomic disadvantage.
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Figure 4: Regression-adjusted estimates and 95% confidence intervals of mean summer
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the
nonadjacent neighborhoods that residents visit (network) by racial/ethnic composition and
poverty status.
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Figure 5: Regression-adjusted estimates and 95% confidence intervals of mean summer
temperature exposure (in degrees Fahrenheit) in residential neighborhoods (Residential) and the
nonadjacent neighborhoods that residents visit (network) by racial/ethnic composition and
Census region.
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