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Abstract

As is the case of most human phenotypes, the trajectory of body size is a function of genetic trans-

mission, gene environment interactions, assortative mating, and net fertility differentials. In this

paper we demonstrate that, as predicted in recent population genetics models on niche construc-

tion, two additional forms of inheritance, vertical cultural (from parents to offspring) and horizontal

cultural (from peers) are needed to account for evolution of human body size. To partially capture

these transmission pathways, we introduce the notion of cultural risk score (CRS) that refers to the

effects of a parental household niche on children’s body size. We use a microsimulation to quantify

the relative effects of each transmission mechanism and demonstrate the dominant role played by

the CRS.



1 Introduction

There is a rich tradition in population genetics that establishes the foundations of models for the

diffusion of a phenotype in human populations (1; 2; 3; 4; 5; 6). The nature of these models is

heterogeneous, reflecting differences in the problems they address. A majority of these models

are designed to assess influences of selection, drift, mutation, and migration on the time and

space distribution of a trait. They introduce consideration of substrate processes that are the

raw materials on which selection, drift, mutation, and migration work: genotypic and phenotypic

transmission of the phenotype, assortative mating, and differential fitness (net fertility).

After 1980 or so, standard genetic models were significantly modified. Beginning with the sem-

inal contribution by Cavalli-Sforza and Feldman (7), an important determinant of the evolution

of human traits, cultural transmission, began to be included in most population models alongside

genetic transmission. Recent models consider several substrate processes related to cultural in-

heritance of traits, from vertical (parent to offspring), to horizontal (from peers) to oblique (from

teachers, mentors, and influencers). As expected, the complexity of the models increases in tandem

with the number of substrate processes included. To circumvent reduced mathematical tractability

without ignoring relevant processes, simplifying assumptions are introduced. Thus, for example, in

most cases, the trait is binary, not continuous, genetic transmission is a function of a single or a

handful of biallelic loci (6; 8; 9; 10; 11; 12), mating is for the most part assumed to be completely

random or completely endogamous by phenotype, seldom by social groups or a combination thereof

and, finally, differential fitness (net reproduction) is usually defined as a simple function of the phe-

notype, invariant over time and space. With some exceptions, these models assume that there are

no gene-environment, GxE, interactions.

In this paper, we introduce a model for the diffusion of obesity that does not invoke many

of the restrictive assumptions required in recent literature. We model a continuous phenotype

(body mass index (BMI)), use continuous genetic values (Polygenic Risk Scores or PRS), allow

for GxE interactions and consider mating by social class. Unlike most recent models of human

traits, we include vertical and horizontal cultural transmission using an empirically based construct,

the cultural risk score, CRS, reflecting the strength of non-genetic effects on children’s body size
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that emerge from environments shared by parents and offspring. We show that vertical cultural

transmission, from parents to offspring, and horizontal cultural transmission (from peers), might

play an important role in the diffusion of obesity. We demonstrate that cultural transmission can

be a dominant force and that, in combination with fertility differentials and assortative mating, is

likely to account for global observed time trends of obesity.

2 Nature of model

Below, we describe the domains included in the microsimulation model.

2.1 Genetic transmission(GT)

There are two strategies to account for GT. The first is to invoke Mendelian segregation rules

and assume that the phenotype is dichotomous and fully determined by one or a few of biallelic

loci. This strategy is appropriate for monogenic phenotypes but unrealistic for most phenotypes of

interest to social and health scientists, such as Body Mass Index (BMI), Type 2 Diabetes (T2D),

height, education, IQ, etc. We have shown elsewhere (13) that, at least in the case of obesity, a

simplified biallelic model can lead to misleading inferences.

A better strategy is to exploit current advances in genetic computing and meta-analyses of

massive genetic data bases (GWAS). These studies have powered the construction of PRSs that

capture effects of hundreds of loci and render unnecessary simplifying assumptions about genotypes.

We will use this approach and focus on a single phenotype, Body Mass Index (BMI) that will be

defined as

BMIi = α+ β × PRSi + γ · CRSi + ϵi,BMI (2.1)

where BMIi, PRSi and CRSi are the BMI, PRS and CRS of an individual i, α, β and γ are

parameters to be estimated and ϵi,BMI is a N (0, σBMI) normal variate.

2.2 Gene-Environment interactions (GxE)

A phenotype trajectory can shift when genetic effects on a phenotype change more than trivially

with environmental conditions. Examples of phenotypes associated with GxE interactions in social
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and health sciences are body size (BMI and obesity), intelligence (IQ), and educational attainment.

There has been a large body of recent research on GxE involving BMI and obesity. First, GxE

interaction effects have been found in populations that experience sharp contrasts between their

ancestral and modern environments. US native populations experience unexpectedly high loads

of obesity given their genetic profile (14). Existence of mismatches is also an explanation for the

excess obesity detected in migrant populations from low income to high income countries despite

similarity in their genetic makeup (15). But even in settings where chances of mismatches are

small, environments shaped by external influences may strengthen (attenuate) the impact of genetic

propensities. Thus, for example, when placed in modern obesogenic settings, entire US and UK

birth cohorts show larger than expected increases in BMI given their individual genotypes (16; 17).

Note that the overall impact of GxE interactions, however, has a limited reach. They certainly can

influence aggregate short-term trends in BMI and obesity but, in the absence of strong selection,

they cannot change allelic frequencies. Depending on the AM regime, they could at most alter the

genotypic composition by phenotype of subsequent generations. To accommodate GxE interactions

we use the following definition

GxE =


I × PRS × CRS, if PRS>0, CRS>0

0, otherwise

(2.2)

where I is the magnitude of the interaction, taking values between 0 and 21. This term is

added to equation (2.1) and allows to account for GxE and also reproduces the right-hand thick

tail of the BMI distribution observed in Western populations (18).

2.3 Vertical cultural transmission (VCT)

Although VCT is of importance in some animal species other than humans, it is uniquely influential

for the inheritance of human phenotypes of interest. With few exceptions (7; 5), the classic popu-

lation literature, eschewed this issue altogether. However, more recently, a number of researchers,

particularly Feldman and colleagues (8; 9; 10; 11; 12), have made significant contributions in this

1A number of very recent studies shows that increased penetrance due to GxE can be as low as .02 and as high
as .4 (17)
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area.

We follow in their steps and implement a strategy that includes the influence of culture on body

size in a way analogous to the PRS (19). In particular, we estimate Structural Equation Models

(SEM) for the BMI of children who live in households and about whom we possess full phenotypical

and genotypical (PRSs) information about parents-children pairs as well as of domains such as

household diet, physical activities, sleep, and stress. One of the ancillary products of SEMs is

expression of a latent variable that reflects the effects of households’ setting, parental and children

PRS, and indirect genetic effects (IGE) on children’s body size. This is the cultural risk score

(CRS), a normalized quantity that can be used in exactly the same way as a PRS is used in

the expression for BMI. Instead of reflecting genetic propensities to body size, the CRS reflects

household, niche-related propensities. Our model accounts for this using expression (2.1). We

assign alternative values to the γ parameter reflecting the strength of the effects on body size.

2.4 Horizontal cultural transmission (HCT)

Many studies have demonstrated the influence that peers can have on an individuals’ body size

(20; 21; 22; 23). In principle, it should be possible to translate peers’ effects estimated in these

literature into a metric of HCT analogous to the CRS. However, to do so, we would need to use

the original data sets and estimate SEMs analogous to those implemented in the case of CRS.

This require using the original data sets to which we have no access. To circumvent this obstacle

and as a temporal solution, we proceed as follows: we assume that HCT operates by modifying

the CRS inherited from parents at a crucial time in a generation’s life, namely, right before they

reproduce. We will also assume that the CRS that a parent generation transmits to their offspring

is the one already modified by HCT: a weighted average of the CRS in their social class at maturity

(at age 25-29, after social class mobility experiences) and of the one inherited from their parental

household. The magnitude of the weight reflects the strength of HCT.

2.5 Assortative mating (AM)

The nature of the population’s mating regime is crucial for the evolution of most human traits.

Mating, or reproductive pair formation, can occur by phenotype, social homogamy (e.g. population
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stratification), or a combination of these. The difference between these mechanisms is consequential

for the propagation of the trait.

An AM regime driven by phenotype modulates the impact of GT. To the extent that couples

that resemble each other phenotypically are more likely to be genetically similar (24; 25; 26), AM

will influence both their offspring’s genotype and phenotype distributions. When the phenotype

is influenced by only a few loci with strong penetrance, the impact of AM on the trait’s evolution

could be strong. Instead, when genetic value is assessed with a PRS, the linkage between AM

and genetic heredity is relaxed2. When mating is random relative to the phenotype, genotypic

frequencies will remain constant across generations, and the trait’s evolution will be a function of

other forces (13)

AM does not only, or mainly, take place by phenotype, but also according to social homogamy

rules. AM by social homogamy can modulate vertical cultural transmission (VCT) of the pheno-

type because membership in social groups results in shared environments and behaviors that might

influence the phenotype (7; 5). In our case, the pathway that enables these influences to operate is

via the CRS. Furthermore, social homogamy creates conditions under which phenotypic distribu-

tions are influenced by indirect genetic effects (IGE)3. As we show later, exposures to early familial

environments contributes significantly to children’s body size and these, in turn, are consequential

for adult manifestations of the phenotype. Although there is empirical evidence showing that pref-

erential mating by body size is quite common, social homogamy by social class might create the

appearance of mating by phenotype 4. When, as happens with BMI, the AM regime is a blend of

both phenotypical and social homogamy rules, there could be feedback effects that strengthen the

influence that GT has on the phenotype.

A highly controversial issue is whether changes in the AM regime can offset the impact of net

fertility differentials. For example, it is known that there are strong net fertility differentials by

intellectual ability (IQ), education, and body size (29; 30; 31; 32; 26). These differentials need not

2AM can also increase gametic linkage disequilibrium (GLD), the association between distant loci (27; 28) and
thus augment the genetic variance of the trait.

3IGE refer to impacts on a focus individual (offspring) phenotype that is influenced by an environmental phenotype
(parental household) which is, in turn, a function of parents or other kin genotypes.

4This could be a result of the fact that social class is strongly correlated (both negatively and positively) with
body size.
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be associated with the genotype or phenotype but could be a result of shared social contexts. Under

what conditions can shifts in mating regimes (phenotypical or social homogamy) significantly alter

the phenotype trajectories implied by regimes of differential net fertility? Below, we address this

question in the case of BMI.

To represent assortative mating, there are three strategies. The first, assumes that mating is

driven only by social class preferences and that any appearance of assortative mating by phenotype

is the result of social homogamy by social class and a strong correlation between body size and

social class. When there are only two social classes (as we will be the case in our model) we define

a one-parameter continuous function, ω ∈ [0, 1] and assume all members of the population find a

partner. When ω = 0, the mating regime is completely random and when ω = 1, the mating regime

is completely endogamous. Other ω values within the closed interval [0,1] define mixed regimes.

Let pii be the fraction of pairs formed by individuals belonging to class i and πi the fraction

of individuals in subpopulation i. Then,

pii = π2
i · (1− ω) + πi · ω (2.3)

for i = 1, 2 and

pij = πi · πj · (1− ω) (2.4)

for i ̸= j.

The second strategy assumes that mating is by phenotype only. If the phenotype is di-

chotomized, one can use expressions similar to those above. If more that two categories are needed,

we simply increase the number of expressions of class (2.3) and (2.4) to capture k groups and as

many as k · (k − 1)/2 classes of distinct relevant pairs.

Finally, a third strategy is to model a blended form of mating regime. To implement this,

populations are first paired by social class and then by phenotype. One can create subpopulations

of pairs (1, 1), (2, 2) and (1, 2). If the phenotype is also dichotomized, e.g. obese vs non-obese,
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expressions (2.3) and (2.4) are applied with possibly different endogamy coefficients ω′s.5.

In this paper we mainly discuss results from a model with AM regulated by social class mem-

bership. Even so, we test the effect of the nature of the AM regime (social class vs. phenotype)6.

We hypothesize that, under some conditions to be specified later, when AM is by social class, the

influence of VCT is more likely to have a strong impact than when it AM is by phenotype or a

combination of both.

2.6 Net fertility differentials (FD)

We adopt the standard demographic definition of net reproduction rate of a reproductive couple c,

NRRc, assume that individual members of the pair are of the same age, and define the quantity as

follows:

NRRc =

∫ b

a
gc(x)κc(x)dx (2.5)

where gc(x) is the fertility rate of pair c at exact age x 7, κc(x) is the couple’s members joint

probability of surviving to age x and a and b are the initial and final ages of reproduction. We

simplify expression (2.5) to be fc = INTc · κ(A) where INTc is the integral of the function gc(x)

and A is mean age at childbearing8.

Fertility differentials in our model will be associated with social classes, not with the phenotype.

Since we work with dichotomized social class, the following expression will be used:

fij(t) = F (t) · (1 + φ · (1− i− j)) (2.6)

where F (t) is the total fertility rate in time t, i and j are parental social classes (1 being upper

class, and 0 lower class), and φ a one-parameter continuous function, φ ∈ [0, 1] regulating fertility

differentials between classes9.

Importantly, fertility differentials will not only influence the phenotype distribution but also

5If there are more than two social classes and/or phenotypes, simple extensions of the above expressions apply.
6Extensions to cases in which AM is by phenotype are described elsewhere (13).
7Throughout, we assume that members of a pair are of the same age.
8Concentrating all fertility at the mean age of childbearing, does not bias results of a stable population model; it

only limits the features of a phenotypical trajectory that can be studied.
9Note that expression (2.6) implies that φ = 1 maximizes fertility differentials while φ = 0 results in no differentials.
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its time trend. From first demographic principles, we know that even if the net reproduction

rate of a subpopulation with a given phenotype is reduced to 1 (implying a rate of growth equal

to 0), the rate of growth of the subpopulation with that phenotype will continue to increase for

some time afterward (33). Among other things, this implies that the distribution of the phenotype

generated by any regime of net fertility differentials has a momentum of its own and that even if

an intervention succeeds in changing fertility levels, its impact will not be felt until after some time

has elapsed. The model we propose is equipped to assess the growth momentum of subpopulations

whose NRR converges to 1.

3 Model description

We describe key features of the microsimulation model by following two generations, a parental one

(G0) and their offspring (G1).

3.1 Parental generation, G0

We begin with generation G0, an arbitrary population of size Z individuals of which Z/2 are

females with an age structure that replicates the one observed for the United States in 1950.

Individuals are endowed with random values of PRS and a CRS, both drawn from two standard

normal distributions implying that, at least at the outset, the PRS and CRS are uncorrelated.

Each individual is then assigned to social classes (high/low) according to their CRS 10. Finally, we

use the following expression to define the parental generation BMI:

BMIi,x = α(x) + β(x)× PRSi + γ(x, c) · CRSi +GxE + ϵi,BMI (3.1)

where α(x) and β(x) depend on age x, γ(x, c) on age and social class c, and GxE is defined in

(2.2).

3.2 Offspring generation, G1

Each pair in generation G0 has all their lifetime offspring at two ages, 25-29 and 30-34, half at

each. The number of offspring for each pair is a function of their social class, as defined by (2.6).

10We use the relation between social class of parents and CRS estimated from the data sets used in (19)

8



These offspring become the members of generation G1. They are assigned a PRS equal to the

average of their parents plus a normal random variate N (0,
√
0.5). Similarly, the offspring’s CRS

is the average of their parents plus a random variate N (0, (1 − ν) · 2 ·
√
0.5), where 0 ≤ ν ≤ 1

stands for the fidelity of cultural parental transmission. When ν = 1, offspring inherits exactly the

parental average of the CRS. When ν < 1, the transmission is distorted by randomness11.

3.3 Social class mobility

The G1 adults’ social class is not determined solely by their parents’, but is affected by social class

mobility. We consider a baseline mobility pattern based on the 1958 National Child Development

Study in the UK. To simplify, the social class of destination is assigned at birth. Although this

simplification implies that social class will have some effects during childhood via γ(x, c) (see 3.1),

these will be very small as their impact will be almost entirely manifested at adult ages (from 20-24,

see below).

3.4 The life course of generation G1

Members of generation G1 are assumed to survive to age 25-29 with probability 1. They experience

two changes. The first is that their BMI is updated, via the intercept α and by the genetic (β)

and cultural (γ) penetrance (see expression (3.1)). α values are drawn from the 1958 National

Child Development Study in the UK whereas β values are drawn by fitting a quadratic curve to the

BMI-PRS to observed at multiple ages in that same cohort. γ values follow the same age pattern

as β, but with higher values reflecting the magnitude of the effects of PRS and CRS on the BMI

we obtained in previous research (19).

The second change concerns the influence of peers on their CRS. To account for HCT, we

consider that at ages 20-24 individuals may be influenced by a class-specific (peer-specific) CRS

derived from their social class of destination. As noted before, the levels of the association between

CRS and social class are derived from previous work (19). The final adult CRS, that is, the one

they will pass on to their offspring, is a weighted average between the inherited (VCT) and the

class-specific one (HCT):

11We assume no bias in the transmission from parents to offspring
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CRSadult = a · CRSchild + (1− a) · CRSclass (3.2)

where a is a measure of the relative strength of parental and peer-influences CRS.

Finally, as their parents did before them, members of G1 form pairs according to social class

homogamy rules (see above) and then procreate producing all their lifetime offspring associated

with their social class.

3.5 Generation Gn

The simulation employs the information on class mobility, mating and reproduction of generation

G1 and applies the algorithm described above using their offspring, namely, generation G2. The

algorithm is then repeated for 50 time steps (five-year jumps). In each of those, a new generation

is born and the population gets 5 years older.

4 Results

We address the following questions:

1. How strong is the impact of VCT compared to the other substrate processes? How different

are outcomes in the case when there is no VCT?

2. How sensitive is a population’s obesity prevalence to changes in AM and DF? Does AM have

different impacts depending on whether or not there is (there is not) VCT? How large are

these differences?

3. How influential is the prevailing class of AM regime? Do AM by phenotype and by social

class induce important differences in trajectories of obesity prevalence?

4. How large can the impact of GxE interactions be on future trends of the phenotype?

In what follows, we answer these questions in turn.

4.1 The impact of VCT and ν

The left and right panels of Figure 1 are plots of obesity prevalence when VCT is ignored (left

panel) and when it is fully included (right panel). When there is no VCT, differences in fidelity
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(ν) have small effects, as it should be. However, when VCT is included, the contrasts in prevalence

when ν is set at a minimum and a maximum are quite large. In fact, the maximum difference at

time period 50 is about about 60% (.30 in top panel and .48 in bottom panel).

Figure 1: Time evolution of obesity prevalence at 40-44 years old in simulations without (left) and
with (right) vertical cultural transmission, and with fidelity ν = 0 (top) and ν = 1 (bottom).

4.2 The impacts of DF and AM

How does the magnitude of the influence of AM compares to that of DF? Figure 2 suggests that

when there is no VCT (top panel), contrasts are quite small. When VCT is fully included (bottom

panel), important differences emerge. First, prevalence levels are always higher when DF is set to

its maximum (yellow versus blue plots). Second, a shift from a fully random to a fully endogamous

AM regime (left versus right plot) results in higher obesity prevalence regardless of DF. Third, the

contrasts in prevalence between DF regimes are larger in a fully endogamous regime (yellow versus

blue plots on right panel) than in a fully endogamous regime (yellow vs blue plot on left panel).
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It follows that shifts in AM regimes can moderate to some extent the impact of DF on obesity

prevalence but only when there is VCT (and high levels of fidelity)

To summarize: in the absence of VCT, both AM and DF play a minor role and differences in

prevalence associated with minimum and maximum AM, on one hand, and minimum and maximum

DF, on the other are small. Instead, when VCT is included larger contrasts emerge and the most

important are associated with DF.

.

Figure 2: Time evolution of obesity prevalence at 40-44 years old in simulations with random
mating (left) and fully endogamous mating by social class (right), when there is no differential
fertility (blue) and when it is maximum (orange). The top panel shows simulations without VCT
and the bottom panel with VCT. All curves shown have ν = 1 and a = 1.

4.3 Does the nature of the AM regime matters?

Figure 3 displays phenotype trajectories under different DF regimes (blue vs yellow plots), by AM

(left and right panels) and, finally, under different definitions of the AM regimes (top and bottom

panels). Note that in both classes of AM, by social class and by phenotype, the fidelity of VCT is set

to its maximum, e.g. ν = 1, and so is a = 1. These plots show, first, that the AM regime does not
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matter when mating is random (as it should, left panel). When mating is fully endogamous (right

panel), social homogamy has a stronger effect on prevalence than phenotype endogamy. When AM

is by social class, prevalence attains [.36 - .47] at t = 50 under differential fertility, while those are

[.29 - .43] when AM is by phenotype (increases between 9 and 24 %).

.

Figure 3: Time evolution of obesity prevalence at 40-44 years old in simulations with random
mating (left) and fully endogamous mating (right), when there is no differential fertility (blue) and
when it is maximum (orange). In the top panel, assortative mating is defined by social class. In
the bottom panel, assortative mating is defined by phenotype (WHO-defined BMI class). All plots
are from models where ν and a are set to 1.

4.4 Impact of GxE

Figure 4 displays obesity prevalence levels in two scenarios, one without GxE interaction (left

panel) and the other with the effect of GxE set at the maximum blue we use in the simulation. As

expected, GxE increases the prevalence levels in most cases. However, the contrasts are smaller

that those associated with FD, AM and VCH.
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.

Figure 4: Time evolution of obesity prevalence at 40-44 years old in simulations when the GxE
term (see equation 2.2) is I = 0 (left) and I = 2 (right).

5 Discussion

Our results lead to a handful of potentially useful inferences. First, VCT plays a central role in

the trajectory of obesity prevalence and its influence increases as fidelity of transmission increases.

While the influence of GT is not trivial, it is overpowered by the impact of VCT.

Second, the role played by AM and DF is enhanced under conditions in which there is VCT.

When fidelity is high, difference in prevalence by DF are larger than those associated with difference

in AM. Furthermore, AM does exert a moderating, albeit modest, influence on the effect that DF

has on the trajectories of obesity prevalence.

Third, when the class of AM is by social class rather than by phenotype, disparities in preva-

lence associated with DF and AM are increased. This result prompts two questions. One is whether

the contrasts between classes of AM, by phenotype and by social class, are the same when ν is set

at different levels lower than 1. The other question regards the pattern of results that is associated

with a blended AM regime, e.g. by social class and phenotype simultaneously.

Fourth, even though we use moderate values of excess genetic penetrance (I) to reflect the

impact of GxE interaction, its role is not trivial. In fact, it augments the impact of fertility

differentials and through it, reinforces the power of potential interventions designed to eliminate or

reduce exposure of some subgroups to obesogenic environments. In addition, its influence could be
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felt in areas we did not fully explore. For example, a GxE interaction that emerges in generation

G0 may have important effects on genotypic composition, couples’ distribution by obesity category,

and genetic heritability of the phenotype, that will be subsequently expressed in G1.

The paper has two shortcomings. First, although unlike other models, ours includes an em-

pirically based representation of VCT and HCT, this is still highly stylized and does not capture

the richness of their likely influence in real populations. Thus, although the CRS we employ is

based on empirical findings regarding the influence of household domains on child body size, its

estimation rests on two data sets from the US. These are unlikely to represent ’niche’ conditions in

populations at different stages of the obesity epidemic. By the same token, the influence of indirect

genetic effects (IGE) is probably underestimated by the CRS as the genotypical information from

parents and children is quite limited.

Second, the model only represents situations in which the relation between fertility and obesity

is positive, e.g the observed pattern in populations that are in advanced stages of the obesity

epidemic. A more realistic model should include both regimes simultaneously, one in which the

initial stages are characterized by an inverse relation that is reversed once the population attains

certain levels of obesity prevalence. This may turn out to be a powerful feedback mechanism that

only an Agent-Based model can handle efficiently.

Despite these limitations, there is value in our contribution. Because we rely on empirically

derived, not guessed, input parameters that represent well the relations between substrate processes

included in the model, our assessment of their influence is empirically anchored and defensible.
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Supplemental Material

The code to reproduce the analyses performed in the paper is available in the repository https:

//github.com/palloni/obesity-leslie-abm.

1 Empirical justification of parameters

The value of input parameters used throughout are not educated guesses but reproduce closely

what we found after an extensive search of empirical studies.

1.1 Assortative mating

The values of the input parameter ω partially reflects empirical values based on information from

two sources. The first was the creation of artificial data set containing the distribution of BMI for

10,000 females. Their BMI was a normal variate with mean 27 and a standard deviation of 3. We

then computed the BMI distribution of their ’partners’ using predicted values from a regression

with slopes, β, that varied between .10 to .70, normally distributed errors, ϵ with 0 and standard

deviations ranging from 1 to 5. In all, we computed 35 different partners’ BMI distributions. The

R2 values of the predictive regressions ranged from .004 to .81. In each case, we computed two

additional quantities: (i) the χ2 value of a cross-tabulation of females and their partners using the

four obesity categories we have employed throughout and (b) the odds ratios, ORij of females in

the ith category of having partners in the j category.

With the artificial values of pii and πi available from each of the 35 pairs of BMI distributions,

we computed the value of ω using the expression

ω = (pii − πi)/(1− πi) (S1)

which is simply derived from 2.3. We then estimate three regression models to sequentially

express ω as a function of β, R2 and χ2.

The final step consists of searching the recent literature and identifying estimates of either

beta, R2, χ2, or combinations thereof. Estimates of ω’s consistent with a study’s parameter(s) are

1
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then calculated using one of the three regression models defined before.

Column 5 of Table S1 displays estimates of ω obtained from each of the studies identified in

the first column using the parameter estimate in column 4. The range spanned by omega estimates

is [.06-0.25] or the first 25 percent of the range of omega used in simulation. Thus, our inference

regarding the modest direct role of AM shaping additive vertical genetic heredity (via increased LD

or homozygosity) and, more generally, the global obesity epidemic, is probably an overstatement.

Table S1: Observed within-couple correlations of BMI/weight and omega

Study Population Type of measure
Parameter
estimate

Omega

Ajslev et al.
(2012)

37,792 pairs
(Copenhangen)

BMI distributions - 0 -.012

Allison et al.
(1996)

Multiple studies
Couples’ correla-
tion weight

0.10-0.33
0.062-
0.206

Hebebrand et
al. (2000)

128-150 couples
German National
Nutritional Survey

BMI distributions - 0.16-0.20

Katzmarzyck et
al. (2002)

1341 parents Cana-
dian Fitness Survey
(1981)

BMI rank correla-
tion

0.14 0.087

Sjaarda & Ku-
talik (2022)

51664 couples UK
Biobank

Weight correlation 0.25 0.155

Speakman et al.
(2007)

42 couples North-
east Scotland

BMI 0.33 0.206

Authors’ esti-
mate from HRS

1,568 couples in
2006 wave

BMI distributions - 0.06

Authors’ esti-
mate from HRS

All couples - all
waves (up to 2020)

BMI distributions - 0.11

Authors’ esti-
mate from DHS
India 2019-20

38,857 couples BMI distributions - 0.12

Estimates from Allison et al (1996) correspond to correlation of partners’ weight (not BMI). The range of val-
ues (0.10-0.33) includes Allison’s et al. own and those and those from 29 different studies in sub-populations
from USA, UK, Italy, Sweden, Norway, Denmark, Brazil, Peru, Israel (see Table 1 in Allison et al. (1996)).
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1.2 Differential fertility

To establish an empirically plausible range for the differential fertility parameter ω we relied on

the observed relation between maternal obesity and number of children ever born (controlling for

maternal age). We used information for multiple sources: 33 African Demographic Health Surveys,

the US National Longitudinal Survey of Youth (NLSY) as well as the National Health and Nutrition

Examination Survey (NHANES). The populations included in our surveys represent a very broad

range of countries at different stages of the obesity epidemic, from those in which it is not yet

discernible to those that have attained relatively high values (though not the highest). Admittedly,

this is not an ideal data set because in all cases it lacks information on the father or partner. But,

alas, there are no national data that include anthropometry of both members of a couple couple. To

approximate the values of the parameter φ we first estimated regressions of the number of children

ever born using a dummy variable for obesity and controls (age and education levels).

The estimated effect of the dummy variable, β and φ are related by the following expressions:

βmax = φ× 3 (S2)

βmin = φ× .5 (S3)

where βmin and βmax are the minimum and maximum values consistent with a value of φ.

Table S2 displays values of β from sample surveys of some populations and subpopulations.

The figures in this table confirm that the value of φ in the middle of the range we are using is

consistent with minimum and maximum β values of .25 and 1.5 respectively. Because the range of

β values is approximately [.20,.50], they are consistent with φ in the range [.067, 1].12.

An important feature of the table is the association between the magnitude of β’s and the

population prevalence of obesity (last column). In particular, there is a strong positive relation

(close to that observed in the US) among females with highest education in countries with the

lowest prevalence of obesity (Africa, India). This is consistent with the idea that as the obesity

12The maximum and minimum values were computed using Table ??
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Table S2: Estimates of Relations between Children Ever Born and Maternal Obesity

Country Source Population β estimate Adult Female Prevalence

India DHS
All -0.381 0.07

Low Ed -0.181
High Ed 0.05

Turkey DHS
All 0.604 0.41

Low Ed 0.054
High Ed 0.496

Africa1 DHS
All -0.792 0.017-0.150

Low Ed -0.371
High Ed 0.206

Asia1 DHS
All -0.157 0.010-0.044

Low Ed -0.237
High Ed 0.168

USA
NLSY 1997 All 0.246 0.37
NHANES All 0.323 0.37

1. Africa includes 33 DHS samples and Asia 8 DHS samples.
2. All regression coefficients are significant at p < 0.001.
3. Source of obesity prevalence estimates: https://ncdrisc.org/obesity-prevalence-ranking.html

epidemic advances, there is a transition from a negative relation between obesity and fertility to a

positive one.

1.3 Genetic penetrance, baseline BMI

The genetic penetrance in equation (3.1) of the main text, β(x), as well as the baseline BMI, α(x),

are derived from the 1958 National Child Development Study (NCDS) and the 1970 British Cohort

Study (BCS70) in the United Kingdom (England, Scotland and Wales)13. The follow-up of this

cohort includes BMI measures or reportings at various ages, from birth to 62 years old in the NCDS

and from birth to 46 years old in the BCS70. Polygenic Risk Scores for BMI are computed for a

large part of the samples.

Figure S1 displays the effect of the PRS on BMI for both cohort at succesive ages, drawn

from linear regressions. As, for the simulation, β(x) values are needed at all age classes (not only

those present in the cohorts), we fitted the obtained results to a quadratic curve in order to obtain

13We accessed the restricted NCDS and BCS70 data after a request procedure to the Center for Longitudinal
Studies, University College London.
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estimates for all ages. For the simulation, the value at the middle of the age class is considered

(e.g. β(22.5) for age class 20-24). Note than the maximum of the fitted curve for β(x) occurs at

age 50.

.

Figure S1: Effect of PRS on BMI by age in the 1958 NCDS and the 1970 BCS, with 95 % confidence
intervals, and quadratic regression line.

The same procedure is used to retrieve α(x) values. Figure S2 shows the values for the intercept

of the regression of BMI on PRS for both cohorts, and the fitted quadratic regression line.Here the

maximum occurs at 53 years old.

5



.

Figure S2: Intercept for the regression of BMI on PRS by age in the 1958 NCDS and the 1970
BCS, and quadratic regression line.

2 Supplementary results
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Table S3: Coefficients of regression of log(BMI) for children and adults, in simulations with and
without vertical cultural transmission, at time t = 20

10-14 years old 40-44 years old
VCT No VCT VCT No VCT

Const. 2.895*** 2.920*** 3.258*** 3.290***

β(ω) 0.003 -0.001 0.009* 0.003
β(φ) 0.019*** 0.000 0.027*** 0.002
β(I(GxE)) 0.006*** 0.001 0.005** 0.001
β(ν) 0.015*** 0.000 0.003 0.000
β(a) 0.000 0.001 -0.010*** 0.001
β(ω × φ) 0.010 0.003 0.002 -0.006
β(ω × I(GxE)) -0.001 0.000 -0.003 -0.001
β(φ× I(GxE)) 0.004 -0.001 -0.003 -0.001
β(ν × a) 0.011*** 0.001 0.035*** 0.001
β(ω × φ× I(GxE)) 0.001 0.000 0.006 0.002

N 360 360 360 360
R2 0.682 0.041 0.669 0.016
Adj. R2 0.673 0.013 0.660 -0.012
RSE 0.012 0.006 0.014 0.007
df 349 349 349 349

The N for corresponds to 72 combinations of parameter values and 5 relicas for each of them.

7


	1 Introduction
	2 Nature of model
	2.1 Genetic transmission(GT)
	2.2 Gene-Environment interactions (GxE)
	2.3 Vertical cultural transmission (VCT)
	2.4 Horizontal cultural transmission (HCT)
	2.5 Assortative mating (AM)
	2.6 Net fertility differentials (FD)

	3 Model description
	3.1 Parental generation, G0
	3.2 Offspring generation, G1
	3.3 Social class mobility
	3.4 The life course of generation G1
	3.5 Generation Gn

	4 Results
	4.1 The impact of VCT and 
	4.2 The impacts of DF and AM
	4.3 Does the nature of the AM regime matters?
	4.4 Impact of GxE


	5 Discussion
	References
	1 Empirical justification of parameters
	1.1 Assortative mating
	1.2 Differential fertility
	1.3 Genetic penetrance, baseline BMI

	2 Supplementary results

