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Introduction 
In 2011, the Bonn Challenge set to restore 350 million hectares (Mha) of forest by 2030 
(http://www.bonnchallenge.org/). This goal has since had renewed commitment through 
initiatives such as the United Nations Decade on Ecosystem Restoration 2021–2030 to 
accelerate progress toward the Bonn Challenge (http://www.decadeonrestoration.org/).  
The research between population processes and forest growth is underdeveloped. 
Research on the human population-environment nexus has examined population as both a 
precondition and an outcome but has largely cast population as a variable of few 
dimensions. Human population is often included in environmental studies using 
population size or density - variables that assume all units (in this case, people) contribute 
equally to the mechanisms that affect or are affected by the environment.  

An informative population variable that reveals the multidimensional nature of populations 
is their age structure. There are reasons to expect heterogeneous environmental impacts 
across age structures. The frequent omission of age as a central variable at any level of 
demographic measurement (individual, household, community or nation) when 
considering population impact is somewhat surprising. When studying individuals, age or 
life course status are frequent markers for understanding fertility, mortality, migration, and 
economic behavior. Family or household age structure is employed to explain patterns of 
household well-being across settings. For populations, age structure is the outcome and 
the engine of fertility, mortality, and migration patterns and is fundamentally important for 
demographers, policymakers, and other stakeholders. It is often used to forecast or explain 
economic development outcomes in both more and less-developed settings.  

Recent literature mostly focuses on the deleterious effects of human populations on the 
environment, such as increased population growth, migration, or population density and 
their effects on land degradation, carbon emissions, and air quality. In either case, whether 
examining environmental impacts on population outcomes or population impacts on 
environmental outcomes, rarely do analyses examine how the age structure of populations 
may influence differential impacts of climate or environment or vice versa.  

We aim to further these conversations by drawing attention to a rich and well-known 
population indicator that has been oft overlooked in environmental research: age structure. 
Age structure of a population is the final outcome and the engine of the fertility, mortality, 

http://www.decadeonrestoration.org/


2 
 

and migration patterns of current, recent, and past regimes. Everyone has an age, and this 
simple fact locates individuals in societal and economic roles. Age structure leaves clues 
about family formation, health, migration patterns, and economic activity and 
opportunity.  Without considering age structure, population size and density become 
featureless landscapes where every unit looks the same structures. Do these aging 
population structures lend themselves to a different kind of dividend, where age structure 
shifts result in land use change or other environmental transformations? 

Data and Methods 
Data 
We utilize global, gridded data to describe demographic and forest-related variables in 139 
low-and-middle-income countries during 5-year intervals during the time period 2005-
2020.  

WorldPop data provide population counts, broken down into 5-year age groups, and 
population density with a 1 km x 1 km resolution (www.worldpop.org). The European Space 
Agency (ESA) Copernicus Program provides information on tree cover at a 300 m x 300 m 
resolution (https://www.copernicus.eu/en). We include a globally gridded data layer of 
gross domestic product (GDP) made available through the Dryad repository (Kummu et al. 
2018). Finally, we include information on migration from the Knowledge Centre on Migration 
and Demography (KCMD) Data Portal. These data estimate the number of migrants in 
gridded data with a resolution of 25 km x 25 km.  

Sample 
Our analysis focused on tree-cover gain during three five-year periods: 2005–2010, 2010–
2015, and 2015–2020. We used five-year periods because that is the frequency of available 
gridded data on net migration (Alessandrini et al. 2023). Geographically, we focused on 
Level 2 administrative subdivisions in low- and middle-income countries (LMICs) in Africa, 
Asia and the Pacific, and Latin America and the Caribbean. These subdivisions would be 
labeled “counties” in the US but are known by various names (e.g., “districts”) in the LMICs 
in our sample. To our knowledge we have generated the first, level 2 integrated estimates of 
forest cover, land cover, potential tree cover, population characteristics (age structure and 
migration), and economic conditions (GDP per capita). We further restricted the sample by 
including only subdivisions where forests would occur under natural conditions (Dinerstein 
et al. 2017) and potential tree canopy cover at least 15% of land area, which is the minimal 
canopy density condition for land covers classified as “tree cover” by the source of our 
land-cover data (Buchhorn et al. 2020, 2021). Furthermore, divisions needed to exhibit tree 
cover that was below its maximum potential level (Bastin et al. 2019) and the subdivision 
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was predominantly rural, defined as having a population density less than 300 people per 
km2 (European Commission and Statistical Office of the European Union, 2021). 

We modeled tree-cover gain (Gain; 0 or 1) as a function of tree-cover gap (Gap), GDP per 
capita (GDPpc; constant USD/person), and a set of demographic variables (Demography): 

Gainit = β1Gapi,t-5 + β2GDPpcit + β3Demographyit + ci + Θt + β4Trendjt + uit, 

where subscripts i, j, and t denote Level 2 subdivision, country and year, respectively. 

Gapit is the positive difference between potential tree cover and current tree cover in 
subdivision i in year t, expressed as a percentage of land area and lagged one period (5 
years) to avoid simultaneity with the dependent variable. ci and Θt are fixed effects for 
subdivisions and years, respectively, and Trendjt is a set of country-level time trends. 
Demographyit refers to a set of demographic variables—population density, in-migration 
and out-migration rates, and age-component shares—which we added sequentially to the 
model to investigate their effects. We expected population density to have a negative 
effect: more people create more land-use pressure instead of converting it to tree cover 
over the ensuing five years. Conditional on population density, we postulate younger 
populations (those with a higher share of those aged 0-14) would represent growing 
populations, and therefore have a negative effect on tree-cover gain via increased land and 
resource use. Similarly, older populations would have a positive effect on tree-cover gain 
through dwindling pressure on resource consumption and land use.  

We estimated the model using a fixed-effects logit estimator. We weighted the 
observations by subdivisions’ potential tree area (in km2) to account for differences in 
subdivision size. The estimation sample included 8,033 subdivisions and was perfectly 
balanced (i.e., data were available for all subdivisions in all three years). 

Preliminary Results 
Table 1 presents the regression results. All models included Gap (lagged), GDPpc, and 
population density along with the subdivision and year fixed effects and country trends. 
Model I included only these variables. Gap, GDPpc, and population density had the 
expected signs and were highly significant. Crucially, the elderly share of the population is 
significantly associated with an increase in tree forest gain in the subsequent five-year 
period. The stratified model that examines the demographic clusters separately show that 
the elderly share has the strongest association with forest gain in countries still 
experiencing a demographic transition. 

Table 1. Estimation results from fixed-effects logit model of tree-cover gain. Units of 
observation: Level 2 administrative subdivisions for three years (2005, 2010, 2015). 
Dependent variable: binary tree-cover gain during subsequent five-year periods (2005–
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2010, 2010–2015, 2015–2020). In addition to the variables listed, all models included fixed 
effects for Level 2 subdivisions, dummy variables for time periods, and country-level time 
trends. p-values are shown in parentheses below coefficient estimates, with asterisks 
displaying significance: *** p<0.01, ** p<0.05, * p<0.1. 

  Main Model Demographic Transition Status 
Environmental 
Conditions 

VARIABLES 

Without 
age 
shares 

Add youth & 
elderly 
shares 

Pre-
transition Transitioning 

Post-
transition 

In moist 
tropics 

Not in moist 
tropics 

Tree-cover gap 9.03*** 9.16*** 9.59*** 10.18*** 8.97*** 11.51*** 6.60*** 

GDP per capita 7.96E-07 -3.59E-06 1.00E-05 -9.72E-05* 6.70E-06 -6.73E-06 -2.53E-06 

Population 
density -2.73E-04 -2.01E-04 3.15E-03* -1.15E-03 -1.70E-03 -5.87E-04 2.52E-05 

Net pos. 
migration rate -0.59 -0.98 0.02 -1.08 -1.46 -1.79** 0.01 

Net neg. 
migration rate -0.91 -0.80 0.30 -3.07*** -0.26 -1.69 -0.67 

Population share: 
youth  7.97*** -2.19 20.49*** 11.14*** 12.24** 1.96 

Population share: 
elderly  16.79*** -2.02 52.52*** 15.53*** 36.13*** 1.57 

R2 0.25 0.26 0.40 0.34 0.20 0.26 0.37 

Observations 23,598 23,598 2,739 7,320 13,539 13,947 9,651 

Number of 
subdivisions 7,866 7,866 913 2,440 4,513 4,649 3,217 

*** p<0.01, ** p<0.05, * p<0.1  
 

Next steps 
This analysis shows our preliminary results, and we have crucial next steps planned before 
we can provide a full reflection of the implications of our findings. We plan to generate 
maps to show our descriptive and analytical findings and further elaborate on possible 
mechanisms between age structure and environment. 
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