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Abstract

Accurate subnational fertility estimates are crucial for shaping policy decisions across diverse

sectors, including education, health care, and social welfare. One of the major challenges in

producing these estimates is the presence of small populations, in which information about

birth counts stratified by the age at childbearing and fatherhood may be lacking or inadequate.

In this research paper, we describe a Bayesian model tailored to estimate the period Total

Fertility Rates (TFR) for both men and women at a subnational level. Building on previous

work by Schmertmann and Hauer (2019), the model utilizes population counts from age-sex

pyramids and models age-specific mortality and fertility patterns accounting for uncertainty

and allowing for spatial and temporal dependencies. Testing the model with simulated data

that mimic Australian regions, as well as with real data from US counties, demonstrates its

ability to generate reasonable TFR estimates. The proposed model exhibits significant potential

for the examination of male and female fertility behaviors across various subregions and time

frames in multiple countries.
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1 Introduction

Precise subnational fertility estimates represent an essential tool for analyzing shifts in fertility

patterns within a country. Reliable subnational fertility estimates help researchers to identify

compositional and contextual factors influencing fertility behaviors at a local level.

This research paper emphasizes the importance of examining not only among women fertility

but among men at a subnational level. While female fertility has been well-documented glob-

ally, male fertility tend to be neglected due to a significant lack of high quality information

(Coleman (1995)). This bias mirrors the focus on female fertility in data collection efforts.

Collecting data on the fertility behavior of women is comparatively easier due to a more pre-

cise definition of the childbearing age interval and the superior information quality in surveys

(Greene and Biddlecom (2000)). Nonetheless, confining fertility studies exclusively to women

lead researchers to neglect the distinctive aspects associated with fertility behaviors among men

(Schoumaker, 2019).

Previous studies (Dudel and Klüsener, 2016; Ratcliffe et al., 2000; Keilman et al., 2014; Schoumaker,

2017; Schmertmann and Hauer, 2019; Dudel et al., 2023; Zhang, 2010; Paget and Timæus, 1994;

Schoumaker, 2019) have documented substantial differences between male and female fertility.

In general, the age-specific fertility curves of men have been found to be somewhat similar to

that of women. However, unlike women, men typically have a broader reproductive age span,

with lower age-specific fertility at younger ages and higher levels at older ages (Schoumaker,

2019). In addition, non-negligible disparities in the total fertility rate (TFR) by sex have

been found (Schoumaker, 2019; Dudel and Klüsener, 2016; Zhang, 2010; Schoumaker, 2017;

Ratcliffe et al., 2000) . In low-fertility settings, fertility levels among men and women tend

to be similar, with female fertility being slightly higher than that male fertility (Dudel and

Klüsener (2016); Zhang (2010)). Conversely, in high-fertility settings, especially in polygynous

societies, male fertility have been shown to be disproportionately higher than female fertility

(Tragaki and Bagavos (2014); Schoumaker (2017, 2019)). In the context of developing coun-

tries, Schoumaker (2019) found that higher differences between male and female fertility are

associated with the prevalence of polygynous unions and with greater disparities between age

at childbearing and age at fatherhood. In addition to polygyny and differences in paternal ages,

sex ratio imbalances have been found to be major drivers of the observed differences between
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male and female fertility. For instance, Dudel and Klüsener (2016) found that male fertility

was much lower than female fertility in eastern Germany during the 1990s, due to a high pro-

portion of female out-migrants after the fall of the Soviet Union. Similarly, Coleman (1995)

documented substantially higher male fertility in France during the 1920s due to the shortage

of men following the World War I.

In general, while variations in male and female fertility have been documented at a national

level, less attention has been devoted to the study of male and female fertility at a subnational

level. One of the main challenges in producing fertility estimates for subnational areas can

be attributed to small populations in which variations in birth counts tend to be fairly high.

Furthermore, detailed information on births by the age of the parents, especially fathers, is

often lacking for subnational populations due to various reasons: data confidentiality concerns,

unavailability of paternal information in birth records, low coverage of certain areas within

a country, lack of well-functioning vital registration systems, lack of nationally-representative

surveys with information on place of residence.

Building on the methodological framework by Schmertmann and Hauer (2019), this research

paper aims to propose a Bayesian model for estimating the period TFR across multiple geo-

graphical areas without the knowledge of births classified by parental ages. The proposed model

allows for the estimation of period TFRs using minimal input data, specifically the number of

children aged 0 − 4, the number of women in the reproductive age interval 15 − 49 and the

number of men aged 15 − 59. Unlike the original model by Schmertmann and Hauer (2019),

which focuses solely on the estimation of female TFRs, our objective is to expand this model

in two ways: first, by enabling the estimation male fertility, and second, by accounting for

temporal and spatial dependencies among adjacent areas and consecutive years.

To the best of our knowledge, this research paper represents one of the first attempts to develop

a Bayesian model for estimating male fertility at a subnational level. Our proposed model relies

on a Bayesian hierarchical structure, which allows for the incorporation of prior information

about mortality schedules and standard age-specific fertility patterns. In addition, it allows to

construct credible intervals for the TFR estimates, helping to understand fertility patterns in

smaller geographical areas where uncertainty is higher.

The following section will briefly describe the importance of Bayesian methods in demography.
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We then provide a detailed description of the proposed model followed by a short portrayal of

the main data sources used for the analysis. Finally, we present the results by fitting the model

to simulated data from Australian regions over the period 2001-2020 and to United States

county-level population data over the period 1982-2019. A discussion of possible extensions of

our model to subpopulations from other countries is also discussed.

1.1 Bayesian Methods in Demography

Bayesian methods have become increasing common in Demography due to their ability of com-

bining multiple data sources in the same model and of accounting for various types of errors.

The employment of Bayesian methods has allowed unprecedented advancements in the estima-

tion and forecast of national populations (Raftery et al., 2012, 2014), migration (Bijak et al.,

2008; Bijak and Wísniowski, 2010; Abel et al., 2013), fertility (Alkema et al., 2011; Schmert-

mann et al., 2014; Ellison et al., 2024) and mortality (Alexander and Alkema, 2018; Raftery

et al., 2013; Alkema and New, 2014).

In the context of subnational estimation, Bayesian methods have also been widely used. For

subnational mortality, Alexander et al. (2017) and Schmertmann and Gonzaga (2018) devel-

oped Bayesian hierarchical models to estimate subnational mortality in contexts where data

availability is limited.

Regardining subnational populations, Bayesian methods have again played a crucial role. Bryant

and Graham (2013) proposed a formal Bayesian framework to obtain subnational population

estimates for six regions in New Zealand relying on multiple data sources. More recently,

Alexander and Alkema (2022) developed a Bayesian method to estimate and forecast subna-

tional population estimates by age and sex in contexts with limited data. In addition, the

’digital revolution’ has led researchers to produce subnational population estimates from non-

traditional data sources within a Bayesian framework. For instance, Leasure et al. (2020)

developed Bayesian hierarchical model to obtain subnational population estimates using geo-

located data.

Concerning subnational fertility estimation, Ševč́ıková et al. (2018) proposed a Bayesian model

to estimate and forecast subnational TFRs that are consistent with the national estimates pro-

duced by the United Nations. Schmertmann et al. (2013) employed empirical Bayesian methods

4



to smooth volatile regional fertility data and then applied a new variant of the Brass relational

model.

Despite the unprecedented developments in demographic estimation with Bayesian methods,

male fertility estimation has been largely ignored, especially at a subnational level. Building

on the methodological framework by Schmertmann and Hauer (2019), we present a Bayesian

model to examine the evolution of subnational male and female TFR estimates over time and

space. By combining multiple data sources, it allows uncertainty to be incorporated and es-

timates to be driven by the available data. The proposed model requires the availability of

accurate population estimates by age and sex. However, it does not require any knowledge of

subnational fertility patterns. We utilize statistical model based on principal components de-

rived from national fertility patterns. To incorporate the mortality experienced by children and

their potential parents, our model demands the availability of subnational mortality estimates.

Although the latter is a strong requirement, we acknowledge the potential of developing a more

complex mortality model to address situations where accurate subnational mortality estimates

are not available.

2 Method

2.1 Model Setup

Let Ca,t be the observed number of children in area a at time t. We assume that it can be

modelled as a Poisson distribution:

Ca,t|K
s

x,a,t ∼ Pois

( ωs∑
x=15

K
s

x,a,tE
s

x,a,t

)
(1)

where Ks
x,a,t is the expected number of children per individual of sex s in the age group x in

area a at time t, Es
x,a,t indicates the observed number of individuals of sex s in the age group

x in area a at time t, ωs is the last reproductive age group for individuals of sex s. The latter

is assumed to be 45− 49 for women and 55− 59 for men. In addition, throughout this paper,

we will consider demographic quantities calculated for five-year age groups.

By harnessing standard approximations from cohort-component projection methods (see Key-
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fitz et al. (2005) for the mathematical details), we can define Ks
x,a,t as follows.

K
s

x,a,t =

[
L
s

x−5,a,t

L
s

x,a,t

· F
s

x−5,a,t + F
s

x,a,t

]
·
L0,a,t

2
(2)

where Ls
x,a,t denotes the expected person-years lived by individuals of sex s in age group x in

area a at time t. L0,a,t denotes the person-years lived by individuals in the age group 0− 4 in

area a at time t. F s
x,a,t denotes the expected fertility experienced by individuals of sex s in the

age interval [x, x + 5) in area a at time t. We set F s
x,a,t to be zero outside the interval [15, 60)

for men and outside the interval [15, 50) for women.

Following Hauer and Schmertmann (2020), we can rearrange equation 2, which can be rewritten

as

K
s

x,t,c = TFR
s

a,t ·
L0,a,t

5
· 1
2

[
L
s

x−5,a,t

L
s

x,a,t

· ϕ
s

x−5,a,t + ϕs
x,a,t

]
= TFR

s

a,t ·
L0,a,t

5
· p

s

x,a,t

(3)

where ϕ
s

x,a,t =
5·F

s

x,a,t

TFR
s

a,t

is the fraction of life time fertility occurring to individuals of sex s in

the age group x if they are subject to the age-specific fertility rates observed in area a at time

t throughout their reproductive ages. L0,a,t

5
denotes the expected fraction of still alive among

children aged 0− 4 in area a at time t. TFRs
a,t is the period Total Fertility Rates experienced

by either men or women in area a at time t. This demographic measure can be interpreted as

the expected number of children per man (woman) in area a at time t if he (she) is subject to

the current period age-specific fertility rates throughout his (her) reproductive ages. p
s

x,a,t can

be defined as an average of the life-time fertility experienced by either men or women in the

age groups x and x− 5. Note that we are assuming that fertility does not begin until age 15;

hence, we set ϕs
10,a,t = 0.

Equation 3 decomposes the expected number children per man (woman) in age group x in area

a at time t as a product of three multiplicative factors. The first two factors, i.e., TFRs
a,t and

L0,a,t

5
, remain constant across the reproductive age groups, while the third factor p

s

x,a,t varies

with age.

Our proposed Bayesian model 3 incorporates demographic knowledge and uncertainty about

demographic quantities by placing models and priors on mortality and fertility parameters in
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equation 2.

2.2 Model for Age-specific Fertility

To incorporate prior knowledge about age fertility schedules, we model the share of life time

fertility in a age group x on the log scale as

γ
s

x,a,t = m
s

x + y
s

1,xβ
s

1,a,t + y
s

2,xβ
s

2,a,t + ν
s

a + δ
s

t + ϵsa,t (4)

where γs
x,a,t = log

(
ϕ
s

x,a,t

ϕ
s

15,a,t

)
is an index defined as the log transformation of the ratio of the

share of life time fertility in age group x to the share of life time fertility in age group 15− 19.

The transformation of ϕ
s

x,a,t ensures that γ
s

x,a,t on the right hand-side of equation 4 can assume

both positive and negative values.

m
s
, y

s

1 and y
s

2 are components derived from a set of standard age-specific fertility curves. In

particular, m
s
is a vector containing the age-specific means of the log-transformed fertility

schedules (γ
s

x,a,t), while y
s

1 and y
s

2 are the first and second left-singular vectors which are ob-

tained via a Singular Value Decomposition on the matrix Y
s
whose columns are log-transformed

male (female) age-specific fertility schedules.

For example, in our application to US counties we employ the US national age-specific female

fertility curves for the historical period 1982−2021 retrieved from the Human Fertility Database

(Jasilioniene et al. (2015)). US national age-specific male fertility schedules are derived from the

Human Fertility Collection (Grigorieva et al. (2015)) and cover the historical period 1982−2015.

7



mx
s y1,x

s y2,x
2

15 25 35 45 55 15 25 35 45 55 15 25 35 45 55

−0.75

−0.50

−0.25

0.00

0.25

0.0

0.2

0.4

0.6

−4

−2

0

2

Age

Female Male

Figure 1: The figure provides an example of the Principal Component Analysis applied to
logged U.S. age- and sex-specific fertility proportions (γs

x,a,t). The first plot illustrates the
average logged fertility rates proportions across the distinct reproductive age classes by sex
(m

s
). The second and third plots display the values of the first (y

s

1) and second (y
s

2) left-

singular vectors of the matrix (Y
s
) separately for men and women.

The mean ms describes the overall age-specific fertility curve. As expected, both male and

female age-specific fertility patterns increase up to the age 30 − 34 and then start to taper

off. The decrease is substantially faster for women compared to men due the narrower female

reproductive age span. For both men and women, the first principal component seems to allow

for the postponement of the mean age at parenthood, strictly increasing for women throughout

the reproductive age period and for men up to the age class 40− 44. This is coherent with the

’postponement transition’ suggested by Kohler et al. (2002). The second principal component

allows for higher fertility levels in the reproductive age interval 35−44. For instance, in regions

with a high share of highly educated men and women in reproductive ages, fertility in the age

interval 35− 44 may be higher than the mean age fertility pattern.

β
s

1,a,t and β
s

2,a,t are defined as shape parameters drawn independently from a standard normal
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distribution for each combination of area a, sex s and time t.

β
s

p,a,t ∼ N (0, 1) (5)

The parameters ν
s

a controls the spatial autocorrelation among neighboring counties. These spa-

tial effects are modelled via a conditionally autoregressive process (CAR) (Besag and Kooper-

berg, 1995).

ν
s

a|ν
s

b ∼ N
(

1

nδa

·
∑
b∈δa

wa,bν
s

a, nδaλ
s

ν

)
(6)

where wa,b is a weight being equal to 1 if county b is a neighbor of county a or 0 otherwise. δa

indicates the set of neighbors for county a. nδa denotes the number of neighbors of county a.

λs
ν is the precision of the spatial effect ν

s

a. Following the suggestions by Knorr-Held (2000), we

assign to λs
ν a gamma with parameters equal to 2 and 0.01. Namely,

λ
s

ν ∼ gamma(2, 0.01) (7)

The parameter δ
s

t accounts for the temporal dependence of age-specific fertility patterns between

consecutive years. This temporal effect is modelled via a first-order random walk. Specifically,

this allows the observed temporal effect for a given year to depend on that of the previous year.

δ
s

t ∼ N (δ
s

t−1, σ
2
δ ) (8)

The parameter ϵsa,t captures the residual spatio-temporal autocorrelation that is not accounted

by the other indepedent spatial and temporal effects. It is assigned a normal distribution with

zero mean.

ϵsa,t ∼ N (0, σ2
ϵ ) (9)

We place weakly informative priors on the standard deviation parameters σδ and σϵ.

σδ ∼ N
+
(0, 1) (10)

σϵ ∼ N
+
(0, 1) (11)
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By simulating age-specific proportions of life-time fertility (see figure 2) for six hypothetical

regions over a 10-year time window, we are able to capture a wide variety of age-specific fertility

patterns. In order to obtain the trajectories in figure 2, we generated values for the model pa-

rameters according to the probability distributions specified above and employed the simulated

values of the parameters to obtain numerical values for γ
s

x,a,t. The simulated numerical values

for ϕ
s

x,a,t can be obtained by applying the following transformation to the simulated values of

γ
s

x,a,t.

ϕ
s

x,a,t =
exp (γ

s

x,a,t)
ωs∑

x=15

exp (γ
s

x,a,t)

(12)

1 2 3 4 5 6

F
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M

ale
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10

Figure 2: The figure illustrates simulated age-specific fertility proportions (ϕ
s

x,a,t) for both
women and men from 6 hypothetical regions over a 10-year period.

2.3 Priors on Total Fertility Rates

The Total fertility rate TFR
s

t,a from equation 3 is modelled through a normal distribution,

whose mean is assumed to be equal to the national Total Fertility Rate observed at time t

(TFR
nat,s

t ) for either men or women.

TFR
s

t,a ∼ N (TFR
state,s

t , σ
2

TFRs
t,a
) (13)
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The standard deviation parameter σ
TFR

s

t,a

is assigned a weakly informative prior.

σTFRs
t,a

∼ N+(0, 1) (14)

The practical implication of centering the prior distribution of TFR
s

t,a to the state value

TFR
nat,s

t is to shrink counties with a small population towards the state average. In this

manner, fertility levels in small counties are partially informed by the state fertility level. On

the contrary, fertility levels in larger counties are primarily determined by their population age-

sex structure. In addition, if state-level TFR values are unavailable, we center the distribution

of the TFR parameter around the national average. In our example, US male TFR values are

available until 2004 at the state level. Therefore, from 2004, we let the mean of TFR parameters

for men be equal to the national value.

2.4 Priors on Mortality Parameters

Schmertmann and Hauer (2019) modelled child and adult mortality with the log-quadratic mor-

tality model by Wilmoth et al. (2012). Without delving into technical details, they established

prior distributions for the two parameters of the log-quadratic model by Wilmoth et al. (2012)

and recovered the age-specific Person-Years using standard life table relationships.

Our proposed model incorporates information about child and adult mortality by placing a prior

probability distribution directly on the person-years parameters (L0,a,t and L
s

x,a,t) of equation

3. Specifically, we can take advantage of the availability of US subnational life table estimates.

In our data example, we used county-specific life tables for the historical period 1982 − 2019

from the US Mortality Database (visit website usa.mortality.org for downloading the data and

see Alexander et al. (2017) for the methodological details). However, we acknowledge that the

direct modelling of the Person-Years is feasible provided that subnational mortality life tables

are available for the country of interest. In case we lack detailed subregional mortality data,

we can resort to other mortality models such as the log-quadratic model that only requires the

knowledge of child mortality.

Operationally, in order to include the uncertainty associated to the subnational Person-Years

estimates in 3, we assume that the Person-Years L
s

x,a,t for individuals of sex s in an age group

x in area a at time t are normally distributed with a mean equal to the corresponding Person-

11
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Years estimate for the age group x from the subnational life table data referring to sex s, area

a and, time t. The variance is calculated through empirical simulations. More details are

included in the appendix.

L̃0,a,t ∼ N

(
L̂0,a,t, σ̂

2

L̂0,a,t

)
(15)

L̃
s

x,a,t ∼ N

(
L̂
s

x,a,t, σ̂
2

L̂s
x,a,t

)
(16)

where L̂0,a,t indicates the estimated Person-Years for the age-group 0 − 4 from a period life

table constructed using mortality rates observed in area a at time t. σ̂
2

L̂0,a,t
is the corresponding

variance calculated by means of simulations. This parameter is included to incorporate infor-

mation about child mortality. Similarly, L̂
s

x,a,t denotes the estimated sex-specific Person-Years

for the age classes x = 10, 15, . . . , 45 for women and x = 10, 15, . . . , 55 for men. Such estimates

are obtained from a sex-specific subnational life table referring to area a and time t. σ̂
2

L̂s
x,a,t

is

the corresponding variance of the estimates.

2.5 Model summary

The model is applied separately for men and women. The following set of equations summarizes

the whole model set up. The number of children aged 0−4 are assumed to be Poisson-distributed

(equation 17). The fertility and mortality parameters that govern the Poisson-process (equation

18) are specified by imposing a hierarchical structure. Preliminary information about the

overall fertility level is included by placing a probability distribution on the parameter TFR
s

t,a

(equation 26) and on its standard deviation σTFRs
t,a
(equation 27). Prior knowledge about the

age-specific fertility patterns is incorporated by specifying a statistical model 19 on national

age-specific fertility patterns and probability distributions on its parameters. Finally, we include

prior knowledge about child and adult mortality by placing a prior probability distributions
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directly on the person-years parameters (28 and 29).

Ca,t|K
s

x,a,t ∼ Pois

(
ωs∑

x=15

K
s

x,a,tE
s

x,a,t

)
(17)

K
s

x,a,t = TFR
s

a,t ·
L0,a,t

5
· 1
2

[
L
s

x−5,a,t

L
s

x,a,t

· ϕ
s

x−5,a,t + ϕ
s

x,a,t

]
(18)

γ
s

x,a,t = m
s

x + y
s

1,xβ
s

1,a,t + y
s

2,xβ
s

2,a,t + ν
s

a + δ
s

t + τ sa,t (19)

ϕ
s

x,a,t =
exp (γ

s

x,a,t)
ωs∑

x=15

exp (γ
s

x,a,t)

(20)

β
s

1,a,t, β
s

2,a,t ∼ N (0, 1) (21)

ν
s

a|ν
s

b ∼ N
(

1

nδa

·
∑
b∈δa

wa,bν
s

a, nδaλ
s

ν

)
(22)

λ
s

ν ∼ gamma(2, 0.01) (23)

δ
s

t ∼ N (δ
s

t−1, σ
2
δ ) (24)

ϵsa,t ∼ N (0, σ2
ϵ ) (25)

TFR
s

t,a ∼ N (TFR
nat,s

t , σ
2

TFRs
t,a
) (26)

σTFRs
t,a
, σϵ, σδ ∼ N+(0, 1) (27)
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L̃0,a,t ∼ N

(
L̂0,a,t, σ̂

2

L̂0,a,t

)
(28)

L̃
s

x,a,t ∼ N

(
L̂
s

x,a,t, σ̂
2

L̂s
x,a,t

)
(29)

The subscript s refers to sex, the subscript t refers to time and the subscript a denotes the

area. The subscript x denotes the age with ωs being the last reproductive age group. ωs is set

to be 45− 49 for women and 55− 59 for men.

2.6 Model implementation

Our final goal is to draw sample from the posterior distribution of the TFR
s

a,t in an area a at

time t conditional on the observed number of children aged 0-4 Ca,t, the counts of men (women)

E
s

15,a,t, . . . , E
s

ωs,a,t and the other model parameters.

Operationally, posterior samples for the TFR parameters were obtained using the statistical R

package nimble (de Valpine et al., 2017). This package allows to specify the main structure of

our model in R, compiles the model in C++ and implement an adaptive Metropolis- within-

Gibbs MCMC algorithm to simulate from the posterior distribution of the TFR parameters.

Best estimates of the TFR parameters were taken to be the medians of the corresponding pos-

terior samples. 95% credible intervals for the TFR parameters were constructed by computing

the 2.5% and 97.5% quantiles from the relevant posterior samples.
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3 Data

3.1 Mortality

To account for the mortality of parents and children, we model directly the age-specific person-

years. Person-years is a common life table function capturing the number of years lived between

two ages. Our data example refers to the US context that provides a rich set of subnational

life tables.

Information on county-level mortality are retrieved from the US Mortality Database. This

data source provides life tables by sex for both states (1969−2020) and counties (1982−2019).

Additionally, to account for the uncertainty in the county-level mortality indicators, standard

errors for the age-specific death probabilities are provided. Based upon the uncertainty of this

life table component, we can easily exploit simulations and life table relationships to obtain

uncertainty measures for the person-years.

3.2 Fertility

Neither male nor female age-specific fertility rates are available at a county level. Hence, we

rely on age-specific fertility rates from the Human Fertility Database for women (Jasilioniene

et al., 2016) and from the Human Fertility Collection for men (Grigorieva et al., 2015). Both

of these data sources are used to obtain national male and female TFR values.

TFR estimates at the state level are available for women for the entire study (1982-2019) and for

men for the period (1982-2004). The US National Bureau of Economic Research provides birth

records with information on the parental ages and on the state where the birth occurred for the

period 1982-2004 (visit the website https://data.nber.org/natality/ for more information).

Using the method by Dudel and Klüsener (2016), we can easily obtain male and female TFR

estimates for the period 1982− 2004. Concerning the period 2005− 2019, National Center for

Health Statistics provides TFR values at the state level for only women. Hence, for the period

2005 − 2019, we used as prior information the national male TFR values available from the

Human Fertility Collection.

15
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3.3 Population counts by age and sex

Population counts by age and sex are taken from National Cancer Institute, which produces

annual population estimates from 1969 on in collaboration with US Census Bureau and the

National Center for Health Statistics.

Using these data, we retrieved the number of children under age 5, the number of women in

the age group 15− 49 and the number of men aged 15− 59 for the period 1982− 2019 and for

all the US counties.

3.4 Population counts by age and sex

4 Results

4.1 Simulated Data

To evaluate the performance of our model, we created a simulated data set of children gener-

ated using existing subnational fertility and mortality patterns for eight Australian territories

1. Given the availability of true subnational fertility and mortality estimates by age and sex

for the period 2001 − 2020, we computed the number of expected children (K
s

x,a,t) at each

parental age group using equation 2. Afterwards, we simulated the overall number of children

(C
s

a,t) according to the relationship shown in equation 1 and applied our proposed model to

the simulated data. The number of potential fathers and mothers were treated as fixed. The

dependency structure among regions was specified using an adjacency matrix matching the

neighboring structure of Australia.

Figure 3 displays the true and estimated TFRs for the eight Australian regions. The dots

indicate the true TFRs and are calculated from national birth register data using standard

demographic methods. The solid lines denote the TFR estimates that were obtained by fit-

ting the proposed model to the simulated data. The corresponding 95% credible intervals are

displayed via shaded regions. Male and female TFR estimates seem to mirror the TFR values

quite closely. In addition, regions with higher populations sizes show lower uncertainty around

their estimates. Regions such as Tasmania (TS) and Australian Capital Territory (ACT) with

1More details on the data used for the simulation are reported in the appendix.
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smaller populations exhibit wider credible intervals.
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Figure 3: True and simulate total fertility rates for eight territories for the period 2001-2020.

To evaluate the performance of the model, we compare it with the Implied Total Fertility Rate

(iTFR) that is obtained via an indirect method by Hauer and Schmertmann (2020).

iTFR =
1

1− 0.75 · q0−4

· 7 · C0−4

W15−49

(30)

where q0−4 is the probability of death under 5 to account for child survival, C0−4 is number of

children under 4 and W15−49 is the number of potential mothers. The multiplicative constant

7 allows age-specific fertility levels to be equal across the distinct five-year childbearing ages,

namely 15 − 19, . . . , 45 − 49. By replacing W15−49 with the number of men aged 15 − 60 and

the multiplicative constant with 9, we can produce a male version of the iTFR indicator.

For each region, we compare these methods of estimation using the root mean squared error

(RMSE), defined as

RMSE =

√√√√ 1

T

( T∑
t=1

ˆTFRa,t − TFR
∗
a,t

)2

(31)
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where T is the total number of years, ˆTFRa,t is the estimated TFR, and TFR
∗
a,t is the true

TFR. The results in table 1 are reported in relative terms due to very small values of the RMSE

for both methods. The comparison is made by dividing the RMSE of the indirect method by

the RMSE of our proposed model. A value larger than 1 denotes a better performance of our

model in comparison to the indirect method by Hauer and Schmertmann (2020), whereas a

value less than 1 indicates the oppisite situation.

Male Female

State Model Indirect Model Indirect

ACT 1.00 4.43 1.00 2.48

NSW 1.00 12.19 1.00 4.03

NT 1.00 3.23 1.00 3.86

SA 1.00 2.52 1.00 5.85

QLD 1.00 4.38 1.00 2.33

TAS 1.00 2.09 1.00 5.17

VIC 1.00 11.36 1.00 3.43

WA 1.00 7.82 1.00 5.18

Table 1: Performance of the proposed model and of the indirect method by Hauer and Schmert-
mann (2020).

Table 1 shows the superiority of our Bayesian method with relative RMSE being strictly greater

than 1.

4.2 Application to US counties

We applied our proposed model to estimate period TFRs by US counties for the historical

period 1982 − 2019. As of 2019, there are 3,244 counties in the country, including the states

of Alaska and Hawaii. The population sizes of US counties display a significant heterogeinity

ranging from counties with over 10 million residents such as Los Angeles to other with less than

100 people.

As a data example, we illustrate the model results for the counties of two US states: California

and Utah. The former is the state with highest population in the country, while the latter has

been the state with the highest recorded fertility levels until the middle of 2010s.
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The model was fitted separately by sex and state.
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Figure 4: Times series of male and female period TFR estimates for six U.S. counties across
the period 1982− 2019. 95% credible intervals are also provided via shaded areas.

Figure 4 displays the evolution of TFR estimates from 1982 to 2019 of six counties, three in

California and three in Utah, disaggragated by sex. TFR estimates are the medians of the

corresponding posterior samples.

The California counties, characterized by a higher absolute number of children, display TFR

estimates with lower uncertainty compared to counties in Utah. Regarding sex differentials by

fertility, we do not observe any staggering difference between men and women. This result is

coherent with previous research on male fertility in low-fertility countries (Schoumaker, 2019).

Nonetheless, we note that starting from the 1990s female fertility is slightly higher than male

fertility. This pattern is coherent with the findings by Dudel and Klüsener (2021), who found

a decline in the ratio of male to female TFR at a national level in the United States .

Concerning the temporal evolution of the TFR estimates by sex, we find distinct trajectories

in the counties of two states. In California we observed an increase in the TFR estimates for

both sexes during the 1990s followed by a decline starting from the 2000s. Previous research
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(Johnson and Li, 2007; Hill and Johnson, 2002) attributed this increase to a growing population

of young adult migrants from Latin American, who tend to have higher number of children than

the US-born population. Tulare County consistently exhibited similar male and female TFR

estimates above the replacement level of 2.1 throughout the entire study period. In Yolo, men

displayed slightly higher TFR estimates. However, for the majority of the study period, the

estimates are below the replacement level. San Francisco showed extremely low fertility levels,

with women experiencing being slightly higher fertility than men. This trend may be linked

to the high living costs and to a high share of population of working age, who might decide to

raise children in more affordable areas.

Counties in Utah experienced a continuous decline in male and female TFRs in the period

from 1980s until the early 2000s. Men and women in these counties used to bear on average

more than three children thoughout their reproductive period as early as 1982. Nonetheless, in

the year 2000, male and female TFR estimates declined by one unit for these Utah counties.

Fertility remained roughly constant throughout the period 2000 − 2009 with values slightly

above the replacement level of 2.1. After the year 2009, TFR estimates began to decline again

in these Utah counties, possibly as a consequence of the global financial crisis. In this context,

both Sanpete and Cache counties reached levels below the replacement levels of 2.1. These

implies that, net of migration, the populations of these counties would start to decrease.
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Figure 5: Male and female TFR estimates for Utah and California in 2019.

Figure 5 shows male and female TFR estimates for Utah and California in 2019. TFR estimates

are generally higher in Utah compared to California. Most of the Utah counties display a TFR

higher than 2.1. Additionally, in both California and Utah counties, women tend to display

higher fertility levels than men.
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Figure 6: Male to female TFR ratios for Utah and California in 2019.

Figure 6 shows the ratio of the male TFR estimates to the female TFR estimates in 2019

in Utah and California. Overall, the majority of the counties in both states exhibit ratios

between 0.95 and 1.05, implying similar levels of fertility between men and women. However,

a non-negligiable number of counties display TFR ratios lower than 0.95, with women having

an higher average number children compared to men. This is consistent with what has been at

national level by Dudel and Klüsener (2021) and at a state level by Schubert and Dudel (2024).

5 Discussion

In this article, we propose a Bayesian modeling framework to estimate subnational TFR for

both men and women in situations where the amount of available data limited. The proposed

method extends the modeling framework developed by Schmertmann and Hauer (2019) in two

ways. First, it allows for the estimation of both male and female fertility. Second, it accounts

for possible spatial and temporal dependencies among the units of observation.

When tested with simulated data from regions in Australia, the model outperforms the non-

probabilistic indirect estimation by Hauer and Schmertmann (2020). In addition, in comparison
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to non-probabilistic indirect methods, relying on Bayesian modeling framework enables to quan-

tify the uncertainty around the demographic indicator of interest to the researcher.

After validating the model with simulated data, it was fitted to estimate male and female TFR

estimates at the county level in the United States from 1982 to 2019. The results suggest that

men and women experience similar fertility patterns across this period, with women exhibiting

slightly higher fertility levels than men. The degree of uncertainty around the TFR estimates

is linked to the absolute number of children under 5, with higher uncertainty in counties with

fewer children. A comparison between Utah and California showed how states within the same

country may experience distinct fertility patterns. The majority of counties in Utah displayed

TFR estimates above the replacement level of 2.1, whereas only a small portion of counties in

California did so.

One of the main advantages of the model is that it does not require any knowledge on the

births classified by parental ages - a piece of information only available at a national level in

countries with well-functioning data registration systems. Subnational information on births by

parental ages is often inaccessible to researchers due to privacy concerns. In countries lacking

well-functioning vital registration systems, births classified by parental ages can only be com-

puted from nationally-representative surveys that are not carried out timely due to the high

associated costs.

In addition, we argue that our modeling framework can be easily applied to other countries. In

most of the developed countries, subnational mortality estimates and subnational population

counts by age and sex are made available to researcher without particular restrictions. Con-

cerning developing countries, subnational population estimates by age and sex from the Census

Bureau could be leveraged to examine fertility at a subregional level for both males and females.

Since the majority of the developing countries lacks subnational mortality estimates, national

mortality estimates from United Nations World Population Prospects could be employed and

the uncertainty coming from absence of subregional mortality data could be incorporated by

placing higher variances on the mortality parameters.

However, we acknowledge that our proposed method model is not free from caveats. First, it

relies on the knowledge of national age-specific male fertility patterns, which are only available

for only a limited amount of countries. In many countries, especially those without high-
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quality birth registers, age-specific male fertility rates can only be estimated from nationally-

representative surveys such as the Demographic and Health Surveys (DHS). Second, our chosen

age range for male reproduction may be overly restrictive for some countries. For example,

Schoumaker (2017) showed that in regions such as Sub-Saharan Africa, male age-specific fertil-

ity rates can remain above zero until age 75. Third, our model does not properly account for

internal migration. For instance, counties with a higher share of college students in comparison

to the total population experience temporary population surges in the age classes 15− 19 and

20− 24, which can lead to an underestimation of the actual TFR in these areas.

In conclusion, starting from the methodological framework by Schmertmann and Hauer (2019),

the proposed method allows to obtain reliable male and female TFR estimates at a subnational

level. The hierarchical Bayesian framework integrates multiple data sources while incorporating

their corresponding uncertainty. In addition, in comparison to traditional indirect deterministic

methods, our approach offers increased flexibility in modeling fertility processes by accounting

for spatial and temporal dependencies.
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Appendix

Variance Estimation for Subnational Mortality Data

In our US example, we use the estimates of the variances of the subnational death probabilities

q̂
s

x,a,t to estimate the variances of the subnational Person-Years estimates. Specifically, for

each combination of age group x, area a, time t and sex s, we transform the reported death

probability estimates (q̂
s

x,a,t) in the logit scale logit(q̂sx,a,t) and simulate the transformed death

probabilities from a normal distribution centered around the subnational estimate on the logit

scale reported in the life table from the US Mortality Database. We draw a random sample of

J logit-transformed death probabilities

logit(q0,a,t)
(j) ∼ N

(
logit(q̂0,a,t),

[
σ̂q0,a,t

q̂0,a,t · (1− q̂0,a,t)

]2)
with j = 1, . . . , J (32)

logit(q
s

x,a,t)
(j) ∼ N

(
logit(q̂

s

x,a,t),

[ σ̂qsx,a,t

q̂
s

x,a,t · (1− q̂
s

x,a,t)

]2)
with j = 1, . . . , J (33)

where J denotes the number of simulated probabilities from the statistical distribution, logit(q
s

x,a,t)
j

indicates the j − th simulated value in the random sample and

[
σ̂
qsx,a,t

q̂
s

x,a,t
·(1−q̂

s

x,a,t
)

]2
is the variance

of logit(q̂
s

x,a,t) calculated using the Delta Method (see Van der Vaart (2000) for details). The

quantity σ̂
2

qsx,a,t
indicates the variance of the subnational death probability estimates from US

mortality database. An identical notation is employed for the subnational death probability

for children aged 0− 4 (q0,a,t).

Afterwards, we transform the previous simulated values into the original scale. From the sim-

ulated samples of death probabilities by age group x, time t, county a and sex s

q
(1)

0,a,t, . . . , q
(j)

0,a,t, . . . , q
(J)

0,a,t

q
s(1)

x,a,t, . . . , q
s(j)

x,a,t, . . . , q
s(J)

x,a,t

(34)
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we employ standard life table relationships to obtain samples of the simulated Person-Years by

age group x, sex s, area a and time t.

L̃
(1)

0,a,t, . . . , L̃
(j)

0,a,t, . . . , L̃
(J)

0,a,t

L̃
s(1)

x,a,t, . . . , L̃
s(j)

x,a,t, . . . , L̃
s(J)

x,a,t

(35)

In order to estimate the uncertainty around the Person-Years estimates, we calculate the em-

pirical variance of the Person-Years values for each combination of time t, sex s, age group x

and area a. Hence, σ̂
2

L̂0,a,t
and σ̂

2

L̂s
x,a,t

are estimated as

σ̂
2

L̂
0,a,t

=

J∑
j=1

(
L̃
(j)

0,a,t −
¯̃L0,a,t

)2

J
(36)

σ̂
2

L̂s
x,a,t

=

J∑
j=1

(
L̃
s(j)

x,a,t −
¯̃L
s

x,a,t

)2

J
(37)

where ¯̃L0,a,t =

J∑
j=1

L̃
(j)

0,a,t

J
and ¯̃L

s

x,a,t =

J∑
j=1

L̃
s(j)

x,a,t

J
are the empirical averages of the simulated Person-

Years estimates.

For our U.S. example, we simulate J = 1, 000 values for the Person-Years for each combi-

nation of age group x, sex s, county a and time t.
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Figure A1: J = 50 simulated Person-Years trajectories for Calaveras County in California in
year 2000. Simulations are reported for the whole population of the county and by sex.

In figure A1, we show 50 simulated Person-Years estimates for Calaveras County in California in

year 2000 by age group x and sex s. Given that this county is characterized by a relatively small

population (roughly 46, 000 in 2019), we observe some variations in the simulated Person-Years

trajectories. Counties with high population sizes present almost no variation in the simulated

Person-Years trajectories. As a consequence, the uncertainty around the Person-Year estimates

from these counties will be very tiny.

Details on Data Sources

Information Content Period Geographical Detail Source

Female fertility Fertility indicators 1933-2021 US country Human Fertility Database (link)

Male fertility Fertility indicators 1969-2015 US country Human Fertility Collection

Mortality Life tables 1982-2019 US counties US Mortality Database (link)

Fertility Birth records 1969-2004 US states US National Bureau of Economic Research (link)

Population Population counts by age and sex 1969-2021 US counties National Cancer Institute (link)

Female fertility Births by maternal ages 1975-2023 Australian regions Australian Bureau of Statistics (link)

Male fertility Births by paternal ages 1975-2023 Australian regions Australian Bureau of Statistics (link)

Population Population counts by age and sex 1975-2023 Australian regions Australian Bureau of Statistics (link)

Mortality Life tables 2001-2020 Australian regions Human Life-Table Database (link)

Table A1: Summary of the data sources
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https://www.humanfertility.org
https://usa.mortality.org
 https://data.nber.org/natality/
https://seer.cancer.gov/popdata/
https://www.abs.gov.au/statistics/people/population/births-australia/
https://www.abs.gov.au/statistics/people/population/births-australia/
https://www.abs.gov.au/statistics/people/population/births-australia/
https://www.lifetable.de/Home/Index


Additional Figures

TFR
1 2 3 4

Figure A2: Spatial distribution of male TFR in 2019. Note that only continental counties are
displayed.
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TFR
1 2 3

Figure A3: Spatial distribution of female TFR in 2019. Note that only continental counties are
displayed.

33



TFR ratio
0.4 0.8 1.2 1.6

Figure A4: Spatial distribution of the ratio of male TFR to female TFR in 2019. Note that
only continental counties are displayed. Values great than 1 denote higher TFR among men,
whereas values less than 1 indicate higher TFR among women.
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