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Introduction

While claims that climate change induces refugee flows continue to dominate head-
lines and surface in public discourse, the scientific community has yet to establish
robust evidence supporting these assertions [1, 2]. The existing literature generally
suggests that migration responses to climate and environmental changes are com-
plex and heterogeneous. They can vary depending on climatic conditions considered,
data and methodologies employed, and geographical areas covered [3]. They may
also be influenced by people’s ability and resources to migrate [4], as well as by
policies that either facilitate or impede migration as a form of adaptation [5]. To
foster a more informed public discourse, there is a need for more holistic method-
ological approaches that can better account for diverse migration behavior. Here,
we propose a novel machine learning approach designed to model climate-induced
migration as a complex yet explainable system.

Our approach builds upon the dynamic elastic net (DynENet) algorithm recently
developed for forecasting asylum-related migration [6]. However, two new features
are introduced into this algorithm. First, we introduce a novel metric, the penalized
deviance ratio (or PDR), for tuning the hyper-parameter that determines which
predictor should be included or excluded in DynENet regression. This is critical
for preventing predictive models from over-fitting, as it balances the trade-off be-
tween prediction accuracy and model complexity. Second, we enriched the original
DynENet model with multi-dimensional and high resolution climate indicators de-
rived from Earth Observation (EO) data. Unlike previous models using country-level
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climate indicators to explain/predict cross-border mobility [7, 3], we develop more
granular indicators at sub-national level. This higher spatial resolution allows us
to quest not only whether changing climatic conditions in a source country induce
migration, but also where these drivers are likely to emerge (i.e., predicting potential
sub-national hotspots of climate-induced migration).

To ease the computational burden of processing high spatial and temporal reso-
lution EO data, we demonstrate the use of our machine learning approach with a
case study rather than a global analysis. Here, we focus on Somalia, a country with
an estimated 72% of the population living below the international poverty line (2.5
USD per day) [8]. More pressingly, extreme weather events have been increasingly
frequent, further damaging already fragile agriculture-based livelihood systems, and
causing widespread food insecurity and internal displacement.

The predictors in our DynENet model are extracted from two sources of data.
First, we process EO data to derive climate indicators at the district level includ-
ing: i) Standardized Precipitation and Evapotranspiration Index (SPEI); and ii) Soil
Moisture Index (SMI). Second, we derive a large set of district-level economic and
socio-political indicators from the Global Database of Events, Language, and Tone
(GDELT) – the largest, most comprehensive, and highest resolution open database
of human society (https://www.gdeltproject.org). Specifically, we group different
types of events curated in GDELT into five broad categories (social, economic, po-
litical, governance, conflict). The grouping is based on the Conflict and Mediation
Event Observations (CAMEO) codebook [9]. These indicators allow our model to
disentangle how worsening climate conditions may operate in tandem with economic,
social, and political factors in shaping the migration patterns of Somali people.

The outcome of interest in our DynENet model is the intensity of Somali nationals
to seek asylum in different European Union (EU) member states, measured by the
asylum-seeking rate (ASR). To compute this measure, we normalize EUROSTAT’s
monthly asylum applications by the total population size in Somalia. The primary
reason for using asylum applications, as opposed to migration statistics from other
international organizations, is the higher time frequency (monthly). This is needed
for DynENet to be operable, as the algorithm only exploits temporal variation which
requires sufficiently long time-series data (more details in the Methods section).
Secondarily, the focus on refugee migration may hold a myriad of implications for
EU’s asylum policy; since the unprecedented wave of refugee inflows in 2015, there
has been an intensifying debate concerning whether changing climatic conditions
have contributed to, and will amplify, asylum-related migration [7].

Model Parameter Estimates

As our models are flow-specific (i.e., each model represents a flow from Somalia to
a EU country), the resulting parameter estimates for each predictor can vary across
EU destinations. Moreover, as our predictors are constructed at the district level
in Somalia, the estimate for a given factor (say soil moisture) can vary across these
districts. To facilitate the interpretation of our estimates below, we put forward the
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definitions of different types of parameters:

• Type I: a destination-district-specific parameter corresponds to how migra-
tion intensity to a specific destination would respond to a change in a given
district-level predictor (e.g., how much ASR from Somalia to Germany would
increase/decrease as a result of a change in soil moisture in the district of Eyl);

• Type II: a district-specific parameter represents how migration intensity to the
EU would respond, on average, to a change in a given district-level predictor
(e.g., how much ASR from Somalia to the EU would increase/decrease as a
result of a change in soil moisture in the district of Eyl);

• Type III: a destination-specific parameter refers to how migration intensity to
a specific EU destination would respond, on average, to changes in a predictor
across all Somali districts (e.g., how much ASR from Somalia to Germany
would increase/decrease as a result of changing soil moisture across all Somali
districts).

Unlike standard least square regression, DynENet does not provide the statistical
significance of parameter estimates. Instead, through the least absolute shrinkage
and selection operator (LASSO), it retains the regressors that are important in
predicting the outcome variable and eliminates (zeros out) the ones that are unim-
portant. Hence, we interpret those retained predictors as statistically important
factors driving forced migration.

District-Specific Parameters

By aggregating parameters at sub-national level (i.e., converting parameters from
Type-I to Type-II), we can explore how migration responses may differ across lo-
calities within a country of origin. Such differential responses can help predict
potential hotspots of climate-induced refugee migration within an origin country.
Figure 1 depicts the average elasticity of the Somalia–EU migration intensity with
respect to different district-level stressors; red/green colors indicate that migration
increases/decreases with worsening climatic, economic and/or socio-political con-
ditions, i.e., positive/negative migration responses to adversities. White (or light
yellow) indicates that the parameters are zeroed out by DynENet (or close to zero),
i.e., inelastic responses.

A key pattern in Figure 1 is that soil moisture index (SMI), SPEI, and conflict
have notably more non-zero district-level estimates (see N.Dist), compared to the
remaining predictors. This difference implies that climate factors coupled with con-
flict situations are more quantitatively important in explaining refugee flows from
Somalia to the EU. However, as most estimates of these three variables are close
to zero, the averaged coefficients (Avg.Coef) are small. As a result, the qualitative
importance of climatic conditions and conflict is low, particularly compared to the
economic and governance variables.

Another important note in Figure 1 is the pervasive heterogeneity in terms of
how the Somalia-EU refugee migration may respond to the district-level climate
factors. Specifically, the directions of the SMI and SPEI elasticity estimates differ
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Figure 1: Average Parameter Estimates by Somali Districts

substantially across districts. These varying estimates indicate that SMI and SPEI
may act as both push and trapping factors, when they drop (i.e., land becomes drier)
in some districts, people might be forced to migrate, while in other places, people
might be increasingly constrained to move. It could also be true that the livelihood
impact of climate conditions might differ depending on locations. In some areas,
drier land (particularly in the aftermaths of excessive rainfall or flood) may improve
agriculture production, hence retain people in place. In other districts, however, it
may indicate severe drought which is detrimental for agriculture, and therefore push
people away.

Given the pervasive heterogeneity of elasticity, it is evident that the forces driving
Somalis to seek asylum in the EU are not evenly distributed, rather they tend to be
concentrated in a small number of districts. If we use -0.5 as a threshold elasticity
to define strong migration response to adversities, merely three districts standout:
Kismaayo, Xudur, and Calawla. As a commercial capital, Kismaayo’s economic
conditions played an important role in inducing refugee migration to the EU; a
10% decline in the economy of Kismaayo is associated with a 13.8% increase in the
Somalia-EU ASR. The conflict situations in Xudur tend to exert strong impact on
asylum-related flows to the EU; when the severity of conflict intensifies by 10%, ASR
would increase by 8.9%. Finally, the Somalia-EU refugee flows tend to be strongly
associated with changing soil conditions in the North-East part of Somalia; for a
10% drop in SMI in Calawla, the ASR to EU tends to increase by 7.8%.

The results presented above hold two important implications. First, there is only

4



Figure 2: Predicted vs. Observed Asylum Seeking Rate

one district in Somalia that can be classified as a hotspot of climate-induced refugee
migration, Calawla. However, the soil moisture elasticity is smaller in magnitude,
compared to the conflict elasticity in Xudue and the economic elasticity in Kismaayo.
Given these differences, we conjecture that, should the observed migration responses
and the dire situations persist, the scale of climate-induced migration from Somalia
to the EU is unlikely to be as profound as flows driven by conflict and economic
stress. Furthermore, it is clear that in most Somali districts, worsening climatic,
economic, and socio-political conditions do not or only mildly contributed to refugee
migration. This implies that the majority of Somalis do not move to the EU or
perhaps to other countries in responses to a variety of adversities, a phenomenon
known as (resource-constrained) immobility [10, 11, 4].

Model Performances

To evaluate the predictive performance of our DynENet model, we compare its
prediction errors with a benchmark model – first-order autoregressive or AR(1).
Note, as our DynENet also contains an AR(1) component, the benchmark model
here can be regarded as a restricted DynENet regression, i.e., imposing zeros on
all coefficients in the DynENet model, except for the autoregressive component.
Such a comparison essentially informs how well the climate, economic, and/or socio-
political predictors retained by DynENet can explain and predict refugee migration
from Somalia to EU member states.

Figure 2 illustrates how well models’ predictions can resemble the actual trends of
ASR from Somalia to the EU. The 95% confidence intervals are obtained through a
bootstrapping procedure. DynENet models’ forecasts are more stable and accurate
(i.e., with lower variability and bias), compared to the benchmark model. The
uncertainty associated with the forecast is also lower (due to smaller training errors).
Given these results, we argue that our DynENet approach is more comprehensive,
compared to time series extrapolation methods. It can provide nuanced insights
into the climate-migration nexus, and, at the same time, accurately predict possible
futures based on these insights.
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Conclusions

In this article, we introduced a novel machine learning model which seeks to ex-
plain and predict climate-induced migration. To demonstrate its performance, we
applied our model to a case study: asylum-related migration from Somalia to the
EU. Leveraging satellite imagery data, we developed a large set of district-level cli-
mate indicators (soil moisture and precipitation-evaporation balance). With these
indicators, we examined how various climate conditions drove Somali refugees to
different EU member states, and more importantly, where these drivers emerged.
We also tested our model’s ability to forecast possible futures of refugee migration
from Somalia to the EU.

A key finding from our analysis is that the factors that pushed Somalis to seek
asylum in the EU are not evenly distributed, but concentrated in several districts.
In particular, the flows are strongly linked to the level of soil moistrue in Calawla,
the economic condition in Kismaayo, and to the conflict situation in Xudur. These
results are non-trivial; while previous studies showed how migration may respond
to environmental and/or socio-economic changes at the country-level [3], here we
demonstrated that these responses can differ within a country of origin. Such dif-
ferential responses are useful for detecting hotspots of climate-induced refugee mi-
gration. For example, by calibrating these differential responses, we can simulate
the scale of refugee migration for each district in case of a climate shock, and map
where the largest refugee flows might come from.

Moreover, the predictive performance of our DynENet model is satisfactory. Com-
pared to an auto-regressive AR(1) model, DynENet exhibits better training and test-
ing (forecasting) results for the vast majority of Somalia–EU refugee flows. Most
importantly, when aggregating flow-specific predictions, our model can resemble the
overall intensity of Somalis to seek asylum in the EU more closely, and provide more
reliable assessment of the uncertainties associated with the forecasts. These results
underscore the added value of our machine learning model, namely it can capture
the complexity of climate-induced migration, but at the same time be explainable
and predictive.

Methods

Data and Preprocessing

The case study of Somalia-EU refugee migration presented above relies on various
sources of data. To measure the outcome variable, asylum seeking rate (ASR), we
make use of the information on the number of first–time asylum applications lodged
every month in different EU countries which is routinely compiled by EUROSTAT.
These numbers are then normalized by the population size in Somalia obtained
from the World Bank. ASR is defined as the number of first–time asylum seekers
per 1000 people remained in Somalia. To align with the time window of our earth
observation data, we use the asylum application data for the period January 2016 –
December 2020. Moreover, some EU destinations are dropped from our analysis if
the ASR time-series has too many missing values and/or insufficient variability (i.e.
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no statistical information).

To measure climatic conditions, we developed various indicators at the district-
level in Somalia. The standardized precipitation and evaporation index (SPEI) is a
normalized indicator for the intensity of extreme climate conditions [12]. A value
of +1/-1 indicates a wet/dry condition that is one standard deviation away from
the normal condition. The index is considered to be more comprehensive than
a single measure of temperature, drought, or rainfall, as it captures the overall
balance between precipitation and the sum of evaporation and transpiration. The
soil moisture index (SMI) are derived from earth observation data. This data is
acquired from the European Space Agency Climate Change Initiative Soil Moisture
Climate Copernicus.

To measure conflict situations, as well as economic and socio-political conditions,
we make use of the Global Database of Events, Language, and Tone (GDELT).
GDELT curates event documents from broadcast, print, and web news in nearly
every corner of every country and at every second of every day. These events are
grouped into 316 event categories based on the CAMEO codebook [9]. Following
[6], we further aggregate these categories into five macro-categories: political events
(GD:Political), social unrest (GD: Social), conflicts (GD: Conflict), economic events
(GD: Economic), governance-related events (GD: Governance). The CAMEO code-
book offers several mechanisms for assessing the “importance” or immediate-term
“impact” of an event. Here, we use the average “tone” of all documents related to a
given event, which ranges from -100 (extremely negative impact) to +100 (extremely
positive impact), with zero being neutral.

The outcome variable and predictors are preprocessed as follows. Monthly ASR is
transformed by taking the natural logarithm. All predictor variables are aggregated
to monthly frequencies to be aligned with the outcome.

Lead-Lag Analysis and Pre-selection of Predictors

Before training the DynENet model, we conducted a lead-lag analysis to i) select
the predictors that have significant correlations with the outcome; and ii) find the
optimal lag length for each selected predictor, an approach inspired by [6]. Currently,
the lead-lag analysis can only be conducted through the yuima R package [13]. In our
analysis, we use yuima to decide which predictors to be mapped into the DynENet
model and to identify the optimal lag of each predictor.

Empirical Migration Model

We specify our migraiton model as,

Yi,t = b0,i +
∑
k=1

bk,iXk,i,t−θ̂k,i
+
∑
j=1

cj,iYj,t−θ̂j,i
+ diYi,t−1 + ϵi,t, i ̸= j (1)

where, i and j are indices for origin-destination dyad flows, t is a time index, Yi,t

is the outcome variable, Xk,i,t−θ̂k,i
is kth predictor at θ̂k,i lag, Yj,t−θ̂j,i

is the flow to
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jth destination at θ̂j,i lag, Yi,t−1 is an auto-regressive term, and ϵi,t is an error term
assumed to be normally distributed with zero mean and a constant variance.

Eq.(1) essentially entails multiple time-series models stratified by origin-destination
flows, and hence is also known as the Flow-Specific Temporal Gravity (FTG) model,
a new class of migration model that seeks to better explain and predict temporal
patterns of migration flows [14]. A key feature of FTG is that all parameters are
no longer fixed, rather they vary across flows. Such a parameterization attempts to
isolate the spatial correlation between the predictors and the migration outcome.
Hence, the parameter estimates are only identified by exploiting the temporal vari-
ations in the data.

Dynamic Elastic Net Algorithm

The Dynamic Elastic Net (DynENet) is a relatively new type of regularisation
method [6]. It is similar to the classic Elastic Net (ENet) with the objective to find
an optimal model specification (i.e., a set of predictors and their weights) that can
best predict the outcome variable. However, a key difference is that the DynENet is
trained on a rolling fold or time window, rather than on the entire time-series data.

Given Eq.(1), the objective function of DynENet for each flow i can be expressed
as,

min
βi

{
1

T

T∑
t=1

L(Yi,t, Xi,tβi) +
λi

2

[
(1− αi)β

2
i + 2α|βi|

]}
(2)

where, Xi,tβi = b0,i +
∑

k=1 bk,iXk,i,t−θ̂k,i
+
∑

j=1 cj,iYj,t−θ̂j,i
+ diYi,t−1. T is the length

of time-series data, L(.) is a loss function, λi determines the magnitude of penalty
on βi, and αi is a mixing factor determining the fraction of penalty applied to β2

i

and to |βi|, respectively.

Eq.(2) combines two types of penalized regression: Ridge and LASSO (Least
Absolute Shrinkage and Selection Operator). For αi = 0, Eq.(2) is a Ridge regression

which will shrink the coefficients through the penalty factor
λi

2
β2
i . For αi = 1, Eq.(2)

becomes a LASSO regression which will zero out the coefficients through the penalty
factor λi|βi|. When αi = 0.5, the model becomes the DynENet with half Ridge and
half LASSO regression. This mix is considered a good compromise in terms of
prediction and interpretation [6].

Hyper-parameter Tuning

Having set αi = 0.5, DynENet has one hyper-parameter to be tuned, λi. Unlike
in classic Elastic Net, λi in DynENet is adaptive, as it is tuned based on a rolling
fold (time window) cross-validation. Specifically, within each fold, we estimate 100
Elastic Net regressions with different values of λi. Typically, the best-tuned λi

is chosen from the regression which produces the smallest prediction errors in the
validation set (i.e., the last six months of each training fold). However, one of
the pitfalls of this conventional approach is that smaller prediction errors might be
driven by an increased model complexity, e.g., DynENet may favor a smaller λi, and
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thus zero out fewer predictors, to improve model’s training performance. The risk
of this approach is that the model might overfit the training data with small bias
but yield high variability in out-of-sample predictions. This so-called variance-bias
tradeoff is undesirable, as it may lead to poor extrapolation (or generalization) into
the future. To avoid overfitting, we introduce a new metric to evaluate the model’s
training performance: the penalized deviance ratio (PDR). For each flow i in each
sub-period w, PDR is computed as,

PDRi,w =

1−
∑Tw

tw=1

(
Yi,tw − Ŷi,tw

)2

∑Tw

tw=1

(
Yi,tw −

∑Tw
tw=1 Yi,tw

Tw

)2

× Tw − 1− ki,w
Tw − 1

(3)

where, Tw is the length of the training data within each fold, ki,w is the number of
selected features for each flow in each fold.

In essence, PDRi,w measures the fraction of null deviance in Yi,tw (i.e., the sum
of squared deviations from the unconditional mean of Yi,tw) explained by the model
after adjusting for the number of selected regressors ki,w. It is important to note that
PDRi,w is a decreasing function of ki,w, hence the deviance ratio is penalized when
model complexity increases. The optimal λi,w is chosen from the tuning regression
that produces the highest value of PDRi,w.

Forecasting Climate-Induced Refugee Migration

For each refugee flow i between Somalia and different EU destinations, the optimal
λi values tuned through rolling fold cross-validation are used for the final training
of our forecasting model. The predictors retained by the final DynENet model are
matched with those in the testing data. These matched predictors, together with
their estimated weights, are then mapped to the forecasting function to predict the
ASR during the last six months of our data (July–December 2020).

The forecasting performance is evaluated by comparing the prediction errors (Root
Mean Squared Errors or RMSE) of the final DynENet model with those of a Bench-
mark model (first-order auto-regressive or AR(1) model). Uncertainties in model
forecasts are assessed at the 95% confidence level. The prediction intervals are ob-
tained through a bootstrapping procedure. Specifically, for each flow and for S
forecasting steps, we draw S residuals from the training set. These residuals are
then added to the forecasted ASR (on log scale). We repeat this procedure 1000
times and obtain a sample of possible futures, and the 2.5% and 97.5% of the sam-
pled values constitute the 95% prediction interval. These bootstrapped intervals are
then converted from natural logarithm to their original scale. The results are shown
in Figure 2.
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