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Abstract

Fertility has a genetic component typically neglected by economists. Using data
from the UK Biobank, we analyze the extent to which genes (measured by poly-
genic indexes) and the environment (measured by birth cohort) affect age at first
birth, completed fertility, and the probability of ever having had a child. There is
evidence of gene-by-environment interactions, with more recent cohorts displaying
greater genetic heterogeneity across all outcomes. A decomposition analysis shows
that greater exposure to contraceptive pill usage plays a key role in mediating these
cohort effects. Leveraging exogenous variation in genetic endowment across sis-
ters and mother-daughter pairs in family fixed effects models, we find that the pill
diffusion increases the age at first birth, particularly for women with greater ge-
netic predisposition to delay motherhood. The results suggest that genes are more
effective in socially more progressive environments.
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1 Introduction

Understanding fertility decisions has been at the center of economic research since the
1960s, paving the way to the analysis of some of the most profound transformations
of the last 100 years which link fertility to female education, life cycle labor supply
and wages, improvements in home production technology, child health and well-being,
economic growth, and female empowerment.1 Although many studies have hinted at
the relevance of genetic endowments to reproductive fitness, none of them explicitly
examined the interplay between genetic markers and socioeconomic factors in shaping
female fertility behavior. Ours is the first paper that integrates sociogenomics into the
economics of fertility.

Most of what we know that relates human genetics (nature) and environment (nur-
ture) to fertility behavior comes from heritability studies (e.g., Mills et al., 2021).2 These
models, however, do not tell us much about how genes are associated with fertility behav-
ior, other than providing an estimate of the proportion of the variation in the outcome
of a decision that is attributable to genetic differences. Moreover, by suppressing the
role played by genes, heritability studies cannot go beyond the nature versus nurture
distinction, which is known to oversimplify, and mischaracterize our understanding of,
behavior (e.g., Houmark et al., 2024). Although genes are fixed at conception, the envi-
ronment where individuals live, which may influence their decisions, is likely to change,
giving rise to gene-by-environment interaction (G×E) effects on fertility outcomes. Ex-
ploring whether genetic predispositions interact differently with different environmental
factors can reveal new heterogeneities and offer insights into the evolution of inequality
in reproductive behavior. This is one of main contributions of our study.

Specifically, we analyze fertility behavior of British women born from the late 1930s
to the late 1960s. Leveraging detailed molecular genetic data from the UK Biobank
(UKB), one of the world’s largest publicly available genomic resources, we measure genetic
endowments using outcome-specific polygenic indexes (PGIs). Variations in each of these
indexes have been shown to predict a wide range of fertility traits and choices (Barban
et al., 2016). We focus on three outcomes (i.e., age at first birth, completed fertility,
and the probability of having ever had a child), which offer a comprehensive picture of
women’s decisions over their reproductive life cycle. Our proxy of environment is year of
birth. This represents a broad measure of the changes faced by women in the UKB, as
they went through very different socioeconomic circumstances at the same point in their
life (and fertile) cycle.3

1Some of the pioneering contributions are Becker (1960, 1981); Becker et al. (1990); Galor and Weil
(2000); Goldin and Katz (2002); de la Croix and Doepke (2003); Greenwood et al. (2005). For a recent
extensive survey, see Doepke et al. (2023).

2Until recently, such studies relied on twins or related individuals (e.g. Sacerdote, 2007; Fagereng
et al., 2021).

3Earlier contributions that use birth cohort as a measure of the changes in the environment which can
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Genetic differences across women have a large positive impact on all outcomes, and
so do birth cohort differences. A 10-year increase in year of birth implies a rise in the age
at motherhood of 1.2 years, a reduction in the number of children ever born of 0.2, and
a decline in the probability of having ever had a child of 6 percentage points.

For the first time, we show that the G×E interactions amplify the observed cohort
effects, and that genetic influences vary depending on the position women have in the PGI
distribution. For example, across the 30 cohorts of the UKB, women with a low genetic
predisposition to delay motherhood (i.e., in the bottom decile of the PGI distribution)
see a small increase in the age at first birth from about 23.5 to just over 24 years. Women
in the top decile of the PGI distribution face a postponement nearly five times larger,
from 25 to almost 30 years of age. Similar significant widening gaps by PGI intensity
emerge for the other two outcomes. In the case of the probability of having ever had a
child, for instance, a 10 year increase in the year of birth is associated with a 3 percentage
point reduction if a woman has a high genetic predisposition to have children and a 9
percentage point reduction if she has a low predisposition. This evidence suggests that
genetic influences on fertility have likely grown in importance for more recent cohorts,
whose social norms and economic opportunities might have been more conducive to female
emancipation (e.g., Doepke et al., 2023). These results do not emerge among men, whose
genetic propensities might have surfaced when environmental risks were less advantageous
to female (but not male) susceptibilities.

To gain a deeper understanding of the gene-by-environment interactions, we perform
a decomposition analysis where we identify three factors that could mediate the cohort ef-
fects. The factors, all defined at the district-year level, are exposure to environments with
different contraceptive pill usage, exposure to milieux characterized by different shares of
women with university (or higher) degrees, and exposure to contexts with different shares
of women employed in highly skilled jobs.4 Many studies have documented the impact of
these factors on fertility and female economic progress (e.g., McCrary and Royer, 2011;
Buera and Kaboski, 2012; Eckstein et al., 2019).5 We find that the reinforcements of
motherhood delay and of the increase in childlessness driven by the cohort effects are
powerfully mediated by pill exposure. The other two mediators play a more limited role.

modify the influence of genetic risk factors include, among others, Rosenquist et al. (2015), Domingue
et al. (2016), and Herd et al. (2019).

4More precisely, pill exposure is defined by the share of pill users among all childless women aged 18 or
more in the same local authority district (LAD) of birth as the focal woman and matched to the calendar
year in which she was 18 years old. College exposure is the proportion of women with a university (or
higher) qualification by LAD and year of birth. High-occupation exposure is the share of women aged
18–30 and in the same LAD as the focal woman whose first job required a high-skill content and linked
to the year when she was 18 years old. We shall come back to these measures with greater detail in
Section 3.

5Female emancipation may have been facilitated by other factors, such as the legalization of abortion
(Myers, 2017) and the rise of feminism (Goldin and Katz, 2002). Demand-side factors, such as equal
pay and sex discrimination legislations, could have played a crucial role too (e.g., Bailey et al., 2024).
Analyzing the influence of these additional channels is interesting but left for future research.
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Changes in the diffusion of contraceptive pill across cohorts account for about half of
the observed delay of age at first birth, and for the entire change in the probability of
remaining childless. These factors, however, do not contribute in explaining the observed
decrease in completed fertility. In addition, we find that pill diffusion mediates the effect
of birth cohort across the entire genetic distribution, suggesting that the diffusion of the
contraceptive pill did not overshadow the role of genetic endowments.

In further analysis, we take advantage of random genetic variation between first-
degree relatives, either sisters or mother-daughter pairs. In both cases, the degree of
genetic variation is reduced in comparison to what we observe over the whole population,
while the differences in the external environment are again relatively small among sisters
but larger between mothers and daughters. Our fixed effects results confirm that growing
up in a more progressive environment magnifies the genetic predisposition to postpone
motherhood, intensifying preexistent differentials across women. Overall, our findings are
consistent with the notion that the profound shifts in attitudes towards egalitarian gender
roles and personal freedom, something we refer to as the the sexual revolution of the
1960s and 1970s, interacted with individual genetic predisposition, amplifying diversity
in reproductive behavior. To support this interpretation, we provide fresh descriptive
evidence of the relationship between gender role norms and pill exposure.

The interpretation of the gene-by-environment interplay we give in this context is
in the spirit of a social control mechanism, according to which genetic influences are
mediated by structural constraints, social norms, and — more broadly — culture (e.g.,
Guiso et al., 2006; Bisin and Verdier, 2011). Social norms, such as those shaped by the
sexual revolution, are expected to channel genetic influences into fertility behavior, either
magnifying or mitigating their impacts on outcomes. Evolving more rapidly than genes,
culture can create different environments that expose genes to new selective pressures
and adaptations (Richerson et al., 2010), which in turn may enhance or inhibit female
reproductive fitness. The association of genetic influences on fertility outcomes can then
be viewed as a proxy of success of genetic predispositions, and, to the extent that social
norms enable women to postpone births or not to have children at all, the influence
exerted by genes is likely to be higher in areas and times that allow for a variety of
alternative behaviors (see, among others, Engzell and Tropf, 2019; Herd et al., 2019).

Our paper adds to the extensive literature on the economics of fertility mentioned at
the very start, integrating the new sociogenomic approach into the main analysis for the
first time. This is important in and of itself, given the recognized, but largely untested,
significance granted to the biological architecture of human reproduction. An additional,
distinct contribution is that we identify meaningful G×E effects and provide an innovative
interpretation based on culture.

This, in turn, gives us an opportunity to speak to the burgeoning economic literature
that uses polygenic indexes to identify gene-environment interactions. A recent overview
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can be found in Biroli et al. (2022). Most of this research focuses on education, wealth,
and health, and uses PGIs for educational attainment, smoking, or body mass index.
For instance, Barcellos et al. (2018) show that genes moderate the effect of education
on health, whereby education-driven improvements in weight are larger for individuals
with high genetic predisposition to obesity. Ronda et al. (2022) find that the educational
returns to genetic endowments are attenuated by childhood disadvantage, meaning that
children who experience childhood disadvantage are unable to realize their full educational
potential (see also Papageorge and Thom, 2020). Parents are found to invest in their
children differently, depending on a child’s genetic endowment (e.g., Sanz-de Galdeano
and Terskaya, 2023; Houmark et al., 2024), and there is evidence of complementarities
in skill formation (Muslimova et al., 2020). Barth et al. (2020) document that genes are
more strongly related to wealth among individuals who have greater autonomy over their
financial decisions, while those with lower educational genetic endowments are likely to
benefit from outsourcing their investment decisions.6 Our study opens up this research
strand to fertility choices.

The remainder of the paper is organised as follows. Section 2 introduces basic concepts
of molecular genetics and the main genetic quantities used in our study. Section 3 presents
the data and descriptive analysis, while Section 4 shows the basic evidence on the gene-
by-cohort interactions. Section 5 goes deeper into understanding the interplay between
genes and environment presenting a mediation analysis, family fixed effects models, and
results on male fertility. It also provides evidence of the association of our environmental
mediators with gender role norms. Section 6 concludes.

2 Measuring Genes

Recent advances in molecular genetics and massive improvements in technology have
made it cost effective to measure millions of genetic variants in the human genome for
large samples of individuals (Conley and Fletcher, 2017). To analyze the impact of genes
directly, a standard approach in the recent sociogenomic literature is to summarize all of
an individual’s genetic endowment in a so-called polygenic index (e.g., Papageorge and
Thom, 2020; Houmark et al., 2024).

Polygenic indexes (PGIs), also known as polygenic scores, are numerical values that
summarize the estimated genetic contribution to a particular fertility outcome (often
referred to as phenotype or trait), based on an individual’s genetic makeup. Formally,
for each individual i, a PGI is the weighted average of a distinct genetic variant, known

6Black et al. (2020) find instead little evidence of gene-environment interactions to explain the inter-
generational transmission of wealth. Their work uses a sample of adoptees, but no genomic data. Using
a subsample of adoptees in the UKB and polygenic indexes to proxy genetic endowments, Cheesman
et al. (2020) instead find strong gene-environment influences.
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as single nucleotide polymorphism (SNP), weighted by the empirical association between
the phenotype itself and the same SNP at each genetic site, i.e.,

PGIi =
S∑

s=1

wsais, (1)

where ais ∈ {0, 1, 2} is the allele count for each SNP s, S is the total number of observable
SNPs in the data, and ws is a weight given by the genome-wide association study (GWAS)
regression coefficient.7 For each individual i, therefore, the PGI is a scalar, which can be
interpreted as a measure of an individual’s genetic association with the phenotype relative
to the population. The range of possible values of a PGI depends on S and converges to
a normal distribution if the number of independent SNPs is sufficiently large. We follow
common practise and standardize each PGI by subtracting its mean and dividing it by
its standard deviation.

A few remarks are in order. First, genetic variants are not randomly observed across
genetic addresses. Their occurrence varies according to a block structure, known as
linkage disequilibrium (Nei and Li, 1973). Several methodologies have been proposed to
account for this feature. We follow the approach introduced by Privé et al. (2020), which
re-weights GWAS summary statistics using linkage disequilibrium between SNPs from a
reference data, in order to avoid the potential bias due to the correlation structure of
genetic variants.

Second, PGIs are ancestry specific and not portable across populations because the
genetic architecture underlying each trait can vary significantly between different an-
cestral groups. This variation is due to differences in linkage disequilibrium patterns,
which affect how genetic variants are associated with each other, and ancestry-specific
allele frequencies, where certain genetic variants may be common in one population but
rare or absent in another (Duncan et al., 2019). For this reason, we restrict our focus
on individuals of European ancestry, and cannot generalize our findings to individuals of
non-European ancestry (see also Campbell et al., 2005; Martin et al., 2017). To adjust for
population stratification directly, our analysis will also include a series of principal com-
ponents of the genetic data, which explicitly account for ancestry differences, minimize
the influence of spurious associations, and maximise statistical power.

7A GWAS scans the entire genome for SNPs associated with a particular outcome. This is done
through linear regression models where the outcome of interest is regressed on SNP counts and it is
iterated for all the (millions of) SNPs available in the data. Results are corrected for multiple testing,
where the convention is of one million independent tests, leading to a standard GWAS statistical signif-
icance threshold of 10 × 10−8. Our work is based on the results from a large GWAS meta-analysis on
reproductive behavior by Barban et al. (2016) and its follow-ups (Mills et al., 2021; Mathieson et al.,
2023). Evidence presented in these studies implicates mechanisms related to reproductive health, puberty
timing, and evolutionary fitness in the biological pathways that link the indexes to fertility phenotypes.
Pioneering contributions in social science research include Beauchamp et al. (2011), Benjamin et al.
(2012), and Okbay et al. (2016).
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Third, if the weights ws are derived from the same data used to perform the GWAS,
overfitting will likely lead to biased estimates (Wray et al., 2013). To avoid this problem,
we use PGIs from the Polygenic Index Repository which divides the sample into three
equally sized subsamples and, for each partition, the summary statistics of the other
two partitions are used as independent weights in the calculation of expression (1) (for
further details, see Becker et al., 2021).8 We thus end up with an estimating sample that
is one-third of the original UK Biobank population.

Fourth, we use the PGIs based on the GWAS for age at first birth and number of
children ever born (Barban et al., 2016). These indexes are based on sex-specific meta-
analyses of genome-wide associations computed on individuals with European ancestry.
To control for secular changes in fertility behavior, the GWAS analysis protocol includes
quadratic polynomials in year of birth as controls. As a sensitivity exercise, we replace
the two fertility-specific PGIs with the PGI for educational attainment (EA) based on
the most recent GWAS by Lee et al. (2018). All three indexes are included in the Becker
et al. (2021)’s repository.

There are important advantages regarding the use of polygenic indexes as direct mea-
sures of genetic endowment in our context. We emphasize two. The first recognizes
that fertility outcomes have extremely high degrees of polygenicity, consistent with a ge-
netic architecture that may be influenced by negative selection (O’Connor et al., 2019).
PGIs therefore acknowledge that each individual falls on a continuum of genetic predis-
positions which result from small contributions of multiple genetic variants (Mills et al.,
2021). The second advantage is that PGIs allow us to be agnostic about the precise bio-
logical processes underlying its corresponding phenotype, especially because this is likely
to be determined by ‘distal’ genetic influences scattered across the entire genome (Belsky
and Israel, 2014).

3 Data

3.1 The UK Biobank and Sample Selection

The UK Biobank (UKB) is a population-based prospective study established by the UK
National Health Service (NHS).9 Between 2006 and 2010, invitations were mailed to
9.2 million NHS registered individuals aged 40–69 (born between 1934 and 1971), who
lived up to 25 miles from one of 22 study assessment centers throughout the UK. A
sample of half a million individuals agreed to participate (implying about 5.5% response
rate) of which around 270,000 were women. As part of the survey, study participants

8In the main analysis, we use the partition UKB3 based on a random sample of individuals with no
third degree or closer relatives.

9For a detailed description of the data as well as access and governance issues, see Allen et al. (2012).
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went through an assessment that included: a self-completed touch-screen questionnaire,
a computer-assisted interview, the collection of physical and functional measures, and
the collection of blood, urine, and saliva samples. All physical and medical measures
(e.g., anthropometrics and blood pressure) were gathered by trained nurses or healthcare
practitioners.

Every participant in the study was genotyped. This makes the UK Biobank one of the
largest publicly available genetic resources in the world. Although the survey has limited
information on respondents’ socioeconomic background and most of the information on
family environment is available retrospectively, it provides geo-coordinates for both place
of birth and current residence at interview, with one kilometer grid resolution.10 We assign
respondents with available geographical coordinates to their region and local authority
district (LAD) both at birth and at the time of interview.11 As shown in Appendix Figure
A1, the geographic distribution of the respondents’ area of birth is widespread across the
country.

To address the selection bias induced by volunteers’ participation in the study, we
adopt the weighting procedure proposed by van Alten et al. (2022), which uses inverse
probability weights based on UK Census microdata.12 This approach corrects the UKB
sampling based on the proximity to recruitment centers, and reweighs the sample to be
nationally representative. Because participants to all biobanks (not just the UKB) are
usually healthier than the general population, these studies may suffer from a healthy-
volunteer bias. van Alten et al. (2022) show that their weighting strategy reduces this
source of bias by up to 80%.

In the analysis, we exclude respondents from Northern Ireland (who represent 6.2%
of the whole sample), those born outside the British Isles (7.7%), and those for whom the
area of birth is missing (0.16%). We also exclude individuals born in 1934–37 and 1970–71,
since only few respondents were born in those years (a total of 1.3% of the original sample),
making cross-cohort comparisons problematic. As already mentioned, we restrict our
attention to individuals with European ancestry to adjust for population stratification,
and we consider only one-third of the original UKB sample to avoid overfitting issues,
focusing on women with no third-degree or closer relatives. These restrictions lead to a
final sample of approximately 68,500 unrelated women.

10The grid coordinate data are provided in the British National Grid (i.e., OSBS 1936) projection.
OSGB1936 is the Ordnance Survey National Grid geographic reference system used in Great Britain.

11Our definition of local authority district is based on the 2018 Census boundaries, which leads to 380
LADs. The data are available from the Office for National Statistics (England and Wales), the National
Records of Scotland, and the Northern Ireland Statistics and Research Agency.

12Selectivity bias can arise because of the possible correlation of genetics (and thus PGIs) to partici-
pation bias Schoeler et al. (e.g., 2023) and to mortality bias as shown in the Health Retirement Study
by Domingue et al. (2017).
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3.2 Fertility Outcomes and Descriptive Statistics

The UKB collects fertility histories, in which each woman reports her age at first live birth
and the total number of children she ever had. Based on this information, we construct
the following three outcomes: age at first birth (A1B); number of children ever born
or completed fertility (NEB); and ever had children (EVER), which is the complement
of childlessness. To minimize right censoring issues for NEB and EVER, the sample is
restricted to women who are aged 45 or more at interview.

As Britain went through profound socioeconomic transformations since World War II,
so did the reproductive behavior of the women in the UK Biobank sample (e.g., Guinnane,
2011). Appendix Figure A2 displays the time trends in our outcomes by birth cohort.
First births have been postponed by more than three years (from nearly 24.5 up to 27.5
years) over the sample period. As women in the early birth cohorts had on average 2 or
more children, those in more recent cohorts had fewer than 1.6 children.13 Finally, the
fraction of women who ever had a child decreased from about 88% among women born
at the start of the UKB to almost 70% among those born in the late 1960s.14

Table 1 shows summary statistics for the three outcomes and standardized PGIs.
It also reports descriptive statistics on three environmental moderators, which we de-
scribe in the next section, and respondents’ own early life conditions, including their self-
reported birth weight (in kilograms), smoking status of their mothers during pregnancy,
and whether they were breastfed. These measures have been used to proxy individual
socioeconomic background and shown to be correlated to later outcomes (e.g., Almond
et al., 2018). We shall use them in a series of robustness checks.

Since one of our main objectives is to investigate the extent of gene-environment effects
on fertility taking a broad stand on what constitutes E, that is, defining it as calendar
time, we check whether our PGIs are stable across cohorts. We explore this issue by
separately regressing each PGI on birth cohorts (grouped in five-year bands), controlling
also for the first 10 principal components of the full matrix of SNP data to account
for population stratification. The results are in Appendix Table A1. As mentioned in
Section 2, the GWAS regressions underpinning the polygenic indexes include quadratic
polynomials in years of birth as a way to account for secular changes in fertility behavior
and possible selection bias in the discovery sample. Despite this, the first three columns
of the table show that the PGIs are significantly associated with some of the most recent
cohorts. For A1B, six (out of the 15) pairwise cohort group comparisons show statistically
significant associations with the polygenic index. This result, which emerges also for

13Some women could have had more children after the last available interview. This, however, will not
change the general picture given in Figure A2.

14Although the first in vitro fertilization (IVF) baby was born in 1978, it took a long time before the
treatment became widely available (Zhao et al., 2011) and its success rate was initially low (Lundborg
et al., 2017). In the UKB, only 31 women gave birth through IVF, that is, less than 0.02% of the births
in the sample.
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five of the comparisons for NEB and EA, is consistent with the findings reported in
Beauchamp (2016) and Kong et al. (2018), suggesting a small cross-cohorts variation in
genetic endowments.15

To overcome this issue and ground our analysis on time-invariant genetic predisposi-
tions, we adjust each PGI by birth cohort and replicate the previous exercise. The new
estimates in the last three columns of Appendix Table A1 show that the adjusted indexes
are no longer associated with birth cohorts. In the rest of the analysis, therefore, we use
this adjusted standardized version of each of the PGIs as our measure of genetic endow-
ment. The kernel-smoothed densities of the indexes are plotted in Appendix Figure A3.
We cannot reject the null hypothesis that they are normally distributed.

Finally, polygenic indexes for different outcomes are likely to pick up similar genetic
material, given non-negligible phenotypic overlaps. This is reflected by the genetic cor-
relations reported in Appendix Table A2, which shows also the cross-correlations of all
outcomes. As expected, NEB is negatively correlated with A1B, and its PGI is also
inversely correlated to the polygenic index of A1B. The genetic correlation of education
and age at first birth is the highest (0.90), followed by a correlation of –0.62 between PGI
EA and PGI A1B.

4 Gene-by-Cohort Interplay on Fertility

We now examine the influence of genes on fertility and how this varies across women’s
birth cohorts, using year of birth as the broad measure of the environment in which
women make their decisions. Figure 1 displays the trends in age at motherhood (A1B),
number of children (NEB), and ever had children (EVER) across 5-year cohorts by two
groups of women, those in the top decile and those in the bottom decile of their PGI
distributions.16 Specifically, women in the top decile of PGI A1B are referred to as
late-fertility-G individuals and those in the bottom decile as early-fertility individuals.
Women in the bottom decile of PGI NEB are instead labelled low-fertility-G women,
while those in the top decile as high-fertility-G individuals.

Figure 1 confirms the aggregate trends reported in Appendix Figure A2. It also
illustrates important differences by genetic endowment. Women with early fertility G

experience a postponement of motherhood of about seven months, with their age at first
birth going from 23.5 years among those in older cohorts to 24.2 years among those in
recent cohorts. Late-fertility-G women, instead, have their first birth at age 25.5 if they
come from early UKB cohorts and at age 29.5 if they are from later cohorts. Women with
late fertility G show not only a higher age at motherhood but also an increasing trend over

15The variation is quantitatively modest and accounts for only up to 7% of a standard deviation of
each polygenic index.

16More precisely, these are means conditional on birth cohorts and PGI deciles.
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birth years. Mirroring patterns emerge for NEB and EVER. In particular, the difference
in NEB between women with low- and high-fertility-G is 0.5 and insignificant among older
cohorts and 0.7 and significant among younger cohorts. Similarly, the corresponding gaps
in EVER are less than 10 and more than 20 percentage points, indicating a change in
the share of women who ever had a child in excess of 100%. This evidence indicates a
clear divergence in fertility choices among women with different genetic endowments, a
difference which amplifies over time.

To test these differences by cohort more formally, we estimate the following model:

Yi = θ0 + θ1Cohorti + θ2G
Y
i + θ3(G

Y
i ×Cohorti) + X ′

iδ

+
10∑
p=1

γ0pPCp
i +

10∑
p=1

γ1p(PCp
i ×Cohorti) + εi,

(2)

where Yi is the fertility outcome for woman i, GY
i is the outcome-specific polygenic index

for individual i, and Cohorti is a linear trend in i’s year of birth.17 We are interested
in θ3, which reflects G×E interactions on fertility, where E is captured by Cohort. X
is a vector of controls, comprising a WWII indicator that equals 1 if a woman is born
between 1939 and 1945, and 0 otherwise, and district of birth fixed effects. To account
for population stratification, we use the first 10 principal components of the full matrix
of SNP data, PCp

i , and their interactions with Cohort. These allow us to control also
for the possible interplay between ancestral commonality and birth cohort, absorbing
any potential stratification bias from the G×Cohort term.18 Finally, εi is an individual
specific idiosyncratic error term.

Table 2 summarizes the results. Each column reports the estimates from equation
(2) for a different fertility outcome, and inference is based on standard errors robust to
heteroskedasticity. All the estimates in the table but one, i.e., θ2 in column (c), are
statistically significant at the tighter p-value threshold of 0.005, which Benjamin et al.
(2018) argue should be the standard of evidence for claims of new discoveries.

Genetic penetrance plays a key role in explaining the observed variation in all out-
comes. A one-standard-deviation increase in G is significantly associated with: (i) a
postponement of age at first birth by 0.87 years; (ii) an increase in the total number of
children born to a woman by 0.11; and (iii) a higher chance of ever having a child by one
percentage point. The environment, proxied by Cohort, plays an equally important role.
Being born 10 years later leads to: (i) a postponement of A1B by 1.2 years; (ii) a reduc-
tion in NEB by 0.2 children; and (iii) a 6 percentage point decrease in the probability of
EVER.

A direct way of assessing the interplay between genes and environment is to focus on
17Given the linear patterns observed in Figure 1 and Appendix Figure A2, we opted for a simple linear

cohort trend instead of higher-order polynomial specifications.
18The 10 PCs are demeaned before interacting them with Cohort as suggested by Keller (2014).
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theG×Cohort estimates. We find evidence of statistically significant gene-by-environment
interactions for all outcomes. In particular, the postponement of age at first birth led by
younger cohorts is reinforced by G×Cohort. Conversely, the reductions in family size
and in the probability of having ever had a child associated with more recent cohorts are
weakened by the gene-by-environment interaction.19

This evidence lends support to the notion of environmentally mediated genetic effects
on fertility-related behaviors, which have long been posited by standard economic theories
of fertility (e.g., Becker, 1981), but never properly documented. It also suggests that
genetic influences on fertility have likely grown in importance for more recent cohorts,
whose social norms and economic opportunities might have allowed a broad range of
life-course alternatives (see, among others, Kohler et al., 1999; Doepke et al., 2023). Put
differently, older cohorts, whose early lives were affected by traditional gender norms
and relatively limited economic prospects, seem to exhibit low levels of genetic influence.
Later cohorts, which went through major changes in the environment they lived in (e.g.,
educational expansions and the sexual revolution), reflect stronger genetic effects. This
is a new, intriguing result and it is the focus of the rest of the paper.

5 Understanding the Gene-by-Cohort Interplay

Using birth cohort as our measure of environmental risk allows us to encompass a host
of socioeconomic factors, which might have affected fertility across the several cohorts
represented in the UK Biobank. In what follows, we focus on three factors that a large
economic literature has shown to be crucial determinants of fertility choices and that
capture potentially different aspects of female empowerment and changing social norms.
These are the availability of oral contraception, female educational attainment, and female
employment in highly skilled jobs.

We perform three exercises. First, to quantify the contribution of each factor in me-
diating the cohort effect on fertility, we use a decomposition approach and test whether
the mediating effects differ by genetic endowment. Second, to account for shared envi-
ronmental risks, we estimate family-based models. Although the influence of genes is
more limited in these models, they can help us to uncover the presence of G×E effects
even when the variation in G or the differences in G and E are more restricted than in
the general population. Finally, we explore male fertility and assess if this is also char-
acterised by a gene-by-cohort interplay and whether or not it is mediated by the same
moderators mentioned above.

19All results are robust to the inclusion of Cohort×X , G×X , and G×PC interactions. These additional
estimates are in Appendix Table A3.
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5.1 Decomposition Analysis

We start by decomposing the total effect of Cohort on Y into a direct effect and an
indirect mediator effect, and then we test if the indirect effect is different at different
points of the PGI distribution. To do this, we use a moderated mediation approach,
adapted from Hayes and Preacher (2013).20 The term ‘moderated mediation’ underlines
that G moderates the pathway between the mediator and Y .

Setup — Let Mi be a vector of moderators that account for the birth cohort effect on
fertility for each woman i. To establish that Cohort is related to a specific mediator, we
estimate the following relationship, one for each moderator j:

Mij = κj + αjCohorti +Xi
′λ+ ζij, (3)

where Mij is the mediator j (j = {1, 2, 3}) for woman i, Cohorti is the linear trend in
year of birth for i, Xi is a vector of individual-specific controls, and ζi is an idiosyncratic
error term.21 The next equation shows the association of Cohorti with the outcome Yi
when controlling for G, all the mediators M, and the interactions between G and M, i.e.:

Yi = ς + τCohorti + φGY
i +

J∑
j=1

βjMij +
J∑

j=1

µjG
Y
i Mij +Xi

′ρ+ ξi. (4)

A simplified graphical representation of the model is shown in Appendix Figure A4.
This setup allows us to decompose the total effect of Cohorti on Yi into: (i) the direct
effect, holding both genetic endowment and mediators constant, which is given by τ in
model (4); and (ii) the indirect effects through each mediator j at different values of G,
that is, αj(βj + µjG

Y
i ) from both equations (3) and (4). We estimate the full model

using a structural equation method and compute bootstrap standard errors with 1,000
iterations for the direct and indirect effects.

Mediators — As mentioned, we consider three mediators. The first, labelled M1, is the
change in availability of the modern oral contraception, the “contraceptive pill”. Many
identify the diffusion of the pill as an indicator of gender-equal norms and one of the main
channels leading to female empowerment (Goldin and Katz, 2002; Bailey, 2006). A related
literature documents the key role played by gender identity norms in fostering women’s
emancipation (e.g., Alesina et al., 2013; Bau and Fernández, 2023; Doepke et al., 2023).
We thus take the diffusion of the pill and its associated gender norms as an environmental

20A recent mediation analysis in the field of genoeconomics is used by Abdellaoui et al. (2022) who
study the association of birth order with a spouse’s PGI and whether this association is mediated by
socioeconomic status. See Huber (2021) for a review.

21In the analysis, X includes a WWII dummy, district fixed effects, the first ten demeaned principal
components of the full matrix of SNP data and their interactions with the cohort linear trend.
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measure relevant to female fertility decisions.22

The contraceptive pill was first introduced in the UK in 1961. Initially accessible only
to married women, its availability was extended to everyone in England and Wales in
1967, in 1968 in Scotland, and in 1972 in Northern Ireland. Women in the UK Biobank
are asked retrospectively whether they have ever used the pill and at which age they
began taking it. For each local authority district (LAD) in the data, we compute the
proportion of childless women aged 18 or above who ever took the pill. We then link this
variable to each woman when she was 18 years old.

Panel A of Figure 2 shows the pill diffusion by birth cohort and region broadly defined.
Contraceptive pill usage varies substantially across cohorts. Women born in the earlier
years of the UK Biobank did not have access to the pill until they were in their mid-
to-late twenties, while those from more recent cohorts faced an environment in which
approximately 80% of the 18 years old in their area used the pill. Women born between
1950 and 1965, who represent a large fraction of those observed in the UKB, experienced
the sharpest variation as pill usage rose from less than 10% to more than 70%. The data
also reveal some (albeit smaller) regional variation, with London having pioneered pill
usage, especially during the 1970s, and Scotland lagging 5–8 percentage points behind.23

The second measure of environmental influence is female college education, M2. The
growth in female schooling has been found to be a salient contributor to the reduced
fertility observed over a considerable part of the twentieth century (e.g. McCrary and
Royer, 2011; Eckstein et al., 2019). Women in the UK Biobank are asked to report
their highest qualification. We use this information to construct the share of women
with a college degree by LAD and year of birth, which is then matched to each woman
in the sample.24 Panel B of Figure 2 displays the evolution of M2 across birth cohorts
and broad geographic regions. We observe an increasing trend for the whole country,
with large differences by region. About 10% of women born in the late 1930s have a
college degree if they are from the North East, a relatively poor area of the UK. The
share grows to 30% among women from the same region but born in the late 1960s. The
corresponding figures for women from the wealthier East of England counties are 30%
and 50%, respectively.

Our last mediator is the proportion of women working in highly skilled occupations,
M3. The UKB has a subsample of approximately 58,000 women with detailed employment

22Many commentators argue that the diffusion of the contraceptive pill is the single most important
determinants of fertility change in Britain during the 1960s and 1970s (e.g., Murphy, 1993). As mentioned
in the Introduction, other supply-side factors (such as the legalization of abortion) or demand-side
factors (such as the introduction of sex discrimination legislation) might have played a role. They are
not analyzed here. Notice also that the dates on respondents’ abortions are not available in the UK
Biobank.

23More spatial variation emerges by LAD, which is the geographic unit of analysis used in estimation.
24The UKB also asks individuals to report the age at which they completed their full time education.

When the direct information on qualifications is missing, we define a woman as having a college degree
if her age at completed education is 22 or above.
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history information covering all the occupations they held. Each occupation is mapped
to a 4-digit SOC2000 code which we group in nine main categories: managers and se-
nior officials, professional occupations, associate professional and technical occupations,
administrative and secretarial occupations, skilled trades occupations, personal service
occupations, sales and customer service occupations, process, plant and machine opera-
tives, and elementary occupations. Using the O*NET-SOC taxonomy, we then combine
jobs that require low skills (elementary occupations), medium skills (administrative and
secretarial occupations, skilled trades occupations, personal service occupations, sales
and customer service occupations, process, plant and machine operatives) or high skills
(managers and senior officials, professional occupations, associate professional and tech-
nical occupations). From this, we compute the proportion of women aged 18–30 whose
first job required a high-skill content by LAD. Finally we match this new variable to each
woman when she was 18 years old. Panel C of Figure 2 shows a smooth increase in M3

from about 17% among women born before WWII to roughly 40% among those born in
the mid-1950s. For all subsequent birth cohorts, this share remains quite stable. The
differences in M3 by regions are small, and similar to those found for M1.

Results — The structural estimates of model (3)–(4) for A1B are reported in Table 3,
while those for NEB and EVER are in Appendix Tables A4 and A5, respectively. In all
tables, columns (a)–(c) show a strong positive association of each mediator with Cohort
(i.e., αj > 0 in equation (3)), indicating that women from later cohorts in the sample
are exposed to greater pill utilization, higher female college education, and more elevated
female shares in highly skilled jobs. This is consistent with the notion that younger
women are exposed to a more progressive socioeconomic environment.

Column (d) reports the Cohort-outcome associations, conditional on M and G×M

interactions. Across all three outcomes, the impact of G on Y , φ, is always positive and
significant. Being born 10 years later leads to a significant postponement of motherhood
by 0.47 years on average (Table 3) and to a significant reduction in the number of children
ever born by 0.24 (Appendix Table A4), but to no change in the probability of ever having
had a child (Appendix Table A5).

Exposure to an environment with a 10-percentage-point greater pill usage increases
A1B by 0.18 years (see β1 in Table 3), and this grows to 0.23 years, if we also consider the
significant G×M1 effect of 0.005. Similarly, a 10-percentage-point increase in the share
of women with a college degree implies nearly a quarter of motherhood postponement,
which rises to 0.29 years if compounded with µ2, i.e., the impact of G×M2. The influence
of greater exposure to high-skill female employment, instead, is smaller and statistically
indistinguishable from zero.

With the exception of the β2 estimate, according to which a 10-percentage point
increase in the share of women with a college qualification implies a small reduction of
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0.03 children in completed fertility, the impacts of M and G×M on NEB are otherwise
generally weak. This suggests that the Cohort-Y relationship in this case is not heavily
affected by our three mediators (see the results in Appendix Table A4). In the case of
EVER, instead, given that τ is statistically insignificant, the Cohort-Y effect turns out
to be entirely mediated by pill usage and female college education (Appendix Table A5).

Table 4 presents the decomposition results. The table shows the direct effect of an
increase in Cohort by one year and the effect of each mediator at the bottom, middle
(i.e., the fifth), and top decile of the genetic distribution, G1, G5, and G10, respectively.
At the bottom of each column, we report the total effect.

Consider women in the top decile of the PGI A1B distribution, which corresponds to
having the highest genetic predisposition to postpone motherhood (column (c)). The di-
rect cohort effect for these women is estimated to be 0.047 (reflecting the τ estimate in the
first row, column (d) of Table 3) and the mediator effect is 0.110 (=0.084+0.021+0.005),
leading to the estimated total effect of 0.157 (=0.047+0.110). This means that for an
average woman being born 10 years later amounts to an increase in the A1B of nearly 19
months, which can be decomposed into a direct effect of almost six months, a pill expo-
sure effect of 10 months, a college exposure effect of another 3 months, and a negligible
contribution of the high-skill occupation effect.

Figure 3 graphically displays the total and indirect effects for each outcome, while the
corresponding percentages accounted for by each mediator are in Table 5, by PGI decile
and outcome. Four results are worth stressing. First, there is a strong gradient in the
total cohort effect by genetic predisposition across all outcomes. Being 10 years younger
implies a postponement of motherhood by 0.8 years among women in the bottom decile
of the PGI distribution, and by 1.6 years among women in the top decile. Second, pill
exposure, M1, claims the lion’s share of the total cohort effects on A1B, accounting for
more than 50% of the association in the top half of the PGI distribution, at least three
times more than what the college exposure mediator explains. In the case of EVER,
the cohort effect is more than fully mediated by M1 across the entire PGI distribution,
explaining almost 150% at top decile and just over 100% in the bottom decile.

Third, although female college education plays a more modest role than pill exposure
(accounting for about 8–21% of the total cohort effect across the three outcomes), it is the
only statistically significant mediator for NEB. Fourth, local exposure to greater female
employment in highly skilled jobs does not mediate the cohort effect for any outcome,
except for A1B for which it reduces age at motherhood among women with a more
pronounced genetic predisposition of having children early.

In sum, these results confirm, and qualify, our earlier evidence. The interplay between
each of the PGIs (our measures of genetic susceptibility) and the mediators of environ-
mental risk (pill exposure, in particular) affects women’s fertility outcomes in line with
the changing social times across cohorts. Put differently, gene-environment interactions
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reinforce the postponement of motherhood and the reduction in the probability of having
ever had a child (or the increase in childlessness), with both processes being more strongly
mediated by pill usage. In spite of the fact that the G×Pill gradient across women at the
top and at the bottom of the PGI distributions is not strongly statistically significant, this
new evidence suggests that pill exposure favors women with greater genetic propensity to
delay motherhood and women with a lower biological susceptibility to remain childless.
While this latter effect tends to level the playing field across women, the former effect
exacerbates existing inequalities. As the environment becomes more conducive to female
emancipation, so are genetic predispositions to fertility capable to exert their influences
more fully, although possibly to different degrees for different women and in directions
that could be socially undesirable.

Robustness Checks — We perform a number of sensitivity exercises, whose results are
displayed in Appendix Figures A5–A7, where panel A in each figure reports the baseline
findings shown in Figure 3. In the first exercise, we re-estimate equations (3) and (4) after
including proxies of early life conditions in X. These are the respondent’s birth weight, and
indicators of smoking status of the respondent’s mother during pregnancy, and whether
the respondent was breastfed. Such measures have been shown to be correlated to pre- and
post-natal parental investments and predictive of both early and later child achievement
(e.g., Almond et al., 2018). Information on these controls is available for at most 55%
of the samples used to estimate our benchmark specification. Despite the loss in sample
size, the new estimates reported in panels B are by and large similar to those shown in
panels A, except that pill exposure mediates the cohort effect slightly less than before
(Appendix Figure A5). This may partly reflect a positive correlation between favorable
early life conditions and pill usage at the local area level.

Replacing the outcome-specific PGIs used in the baseline specification with the PGI
EA or adding PGI EA as an additional control does not affect our results (see panels C
and D in Appendix Figures A5–A7). This confirms the well known genetic overlap picked
up by our PGIs and PGI EA (e.g., Mills et al., 2021), and it also emphasizes nuanced
differences among them.

To deal with possible selective internal migration, we re-fit the model of equations (3)
and (4) on the subsample of ‘stayers’, i.e., women whose area of residence at the time
of interview is the same as that observed at birth. This leaves about half of the original
sample.25 Most of the baseline results are upheld (see panel E of Appendix Figures A5–
A7), with the exception that the mediating effect of pill exposure is even greater for A1B
(especially at the bottom of the PGI distribution, i.e., among early-fertility-G women)

25For this exercise, we use 40 NUTS2 statistical areas, which are larger than LADs. This is because
we aim to identify meaningful moves rather than short-distance relocations, while keeping a fine level of
granularity. If we had LADs as our geographical unit in this analysis, we would have retained only 22%
of the original sample.
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and EVER (across the entire PGI distribution). The importance of exposure to the pill
usage, therefore, seems to be even more crucial for less mobile women.

In our last check, we cluster standard errors at the LAD level. While this level of
clustering conforms to the measurement of the mediators, it may not be appropriate for
Cohort and PGIs, which vary at the individual level. Polygenic indexes, however, are
known to have a complex geographic structure which reflects population stratification
and its possible interaction with all mediators. In the main analysis, we account for these
specific aspects by including the first 10 principal components of the genetic data and
their interactions with Cohort, but other clustering dimensions might be missed. The
results in panel F of Appendix Figures A5–A7 show standard errors that are essentially
identical to those found with the baseline specification.

Taken all together, these findings uphold our previous estimates. They reiterate the
importance that the diffusion of the oral contraception technology had in shaping women’s
fertility decisions. Importantly, and with the usual caveat on statistical significance men-
tioned above for the main decomposition results, they suggest that a higher exposure
to pill usage magnifies motherhood postponement among women with greater genetic
susceptibility to delay age at first birth and attenuates the probability of having ever had
children among women with lower biological propensity to remain childless.

5.2 Family-Based Models

The measures of E used so far have focused on aggregate external forces, which women
were exposed to at birth or while growing up, and which have been shown to be relevant
to female fertility. Fertility decisions, however, could also be shaped by the environment
women face within their own family of origin. This internal environment may be affected
by physical risk factors (e.g., parental resources, parenting styles, family norms, housing,
and neighborhoods) as well as parental genotypes that are not genetically transmitted
from parents to offspring, but might yet affect child phenotypes, a phenomenon known
as “genetic nurture” (Kong et al., 2018; Houmark et al., 2024).

Family-based models can be used to account for shared internal environmental risks.
The richness of the UK Biobank data enables us to perform two different exercises that
exploit random genetic variation across blood relatives. In the first, we estimate sister
fixed effects (SFE) models, which have been extensively used in economic research on fer-
tility (e.g. Rosenzweig and Wolpin, 1995). By comparing siblings who grew up in similar
(internal and external) environments, these models allow us to assess the importance of
G×E effects, even when the influence of both genetic and social transmissions is heavily
restrained (Belsky et al., 2018) or when parents shape their offspring’s outcomes by re-
sponding to their genetic endowment differentials (e.g., Muslimova et al., 2020; Fletcher
et al., 2023). In the second exercise, we consider mother-daughter pairs and perform a
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family fixed effect analysis. In this case, genetic endowments continue to be similar as
in the previous exercise (although in a way that differs from the SFE model), but the
differences in environmental risks are substantially greater.

To fit family-based models we use a specific sample of Becker et al. (2021)’s PGI
repository, which includes first grade relatives. Given the importance of pill exposure in
mediating the cohort effects, we now consider oral contraception as our only measure of
E, although controlling for the Cohort trend.26 For each woman i in family f , we then
estimate:

Yif = ϕ0 + ϕ1Pillif + ϕ2G
Y
if + ϕ3Pillif×GY

ij +Xif
′π

+
10∑
p=1

η0pPCp
if +

10∑
p=1

η1pPCp
i ×Pillif + ϑf + υif ,

(5)

where Pill is the pill exposure measure described earlier, the vector Xif includes the usual
control variables plus a linear trend in the year of birth, ϑf measures the time-invariant
family unobserved components shared among sisters or mother-daughter pairs, υ is an
individual idiosyncratic shock, and all the other terms have the same definition as before.

Sister Comparisons — This analysis is performed on a sample of approximately 12,000
biological sisters. Appendix Table A6 reports summary statistics on this sample. The
SFE estimates are summarized in Table 6. Columns (a), (c), and (e) provide a benchmark,
estimating equation (5) without family fixed effects, while the remaining columns also
account for ϑf .

Columns (a), (c), and (e) reveal that the random genetic variation across sisters exerts
an influence on all three outcomes that is always statistically significant and quantita-
tively similar to what we observe in the original sample of women reported in Table 2.
Controlling for sister fixed effects in columns (b), (d), and (f) reduces genetic penetrance
by about 55% in the case of A1B and 20% in the case of NEB and EVER, but ϕ2 remains
always positive and highly significant. This attenuation is not surprising, since on average
one-half of the SNPs inherited from parents are shared among sisters.27

A 10 percentage point increase in pill exposure delays age at first birth by 0.32 years, a
large and statistically significant effect that grows slightly when we account for sister fixed
effects.28 This is striking, given the high correlation in Pill observed among sisters in the

26It is worth noting that the pill exposure correlation between mothers and daughters is 0.05, whereas
it is 0.84 among sisters.

27The raw correlation between sisters’ PGI A1B is around 0.57. The correlation between siblings is
usually slightly higher than between parental and child genotypes because of assortative mating (Torvik
et al., 2022).

28To benchmark these estimates, we re-estimated the baseline specification (5), where Pill is the
measure of environmental risk, while also controlling for Cohort. Besides a strong positive impact of
Cohort on A1B, these additional results reported in Appendix Table A9 show a statistically significantly
positive ϕ1 estimate which is 15% lower than the corresponding estimate in column (a) of Table 6.
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UKB. Therefore, however similar the internal environmental risks faced by sisters might
be, small differences in external risks are associated with meaningful differences in A1B:
women who grew up in more progressive milieux with greater pill exposure postpone their
first birth further. The other two outcomes, instead, are unaffected by pill exposure. In
part, this could be a result of the low statistical power of the (smaller) sample of sisters,
but it may also reflect the possibility that a more intense exposure to pill utilization does
not affect as much the quantum of fertility as it does its timing. Bailey (2006) finds
similar evidence.

The lack of impact on NEB and EVER emerges also for gene-by-environment inter-
actions. This is likely the cumulative result of muted direct effects of both G and Pill on
both outcomes. However, the G×Pill interplay on A1B, ϕ3, is positive and significant,
albeit about one-third of its comparator in the full sample, θ3, in Table 2. As in that
case, the ϕ3 effect amplifies the increase in the age at first birth associated with a greater
pill usage exposure, supporting the notion that genetic susceptibilities to fertility tend to
surface more distinctly when environmental risks (or societal cultural norms) are more
favorable to female emancipation.

Mother-Daughter Comparisons — This analysis uses about 2,000 mother-daughter dyads,
in which daughters were born on average around 1965 and mothers around 1942 (see
Appendix Table A6). Mirroring the previous exercise, variation in genetic influences is
limited, but now we leverage greater variation in the external environment. Using the
same two specifications as before, equation (5) is estimated on pairs of one mother and
one daughter.29 Since, obviously, childlessness cannot be measured on the subsample of
mothers, we perform the analysis only on A1B and NEB. The results are in Table 7.30

Unlike the case of the SFE model, the impact of genes, ϕ2, on A1B becomes statisti-
cally insignificant when family fixed effects are accounted for in column (b). It is instead
large and significant on NEB (see column (d) of Table 7). Pill exposure is strongly as-
sociated with both outcomes and in the expected direction. In the case of A1B, ϕ1 is
substantial, with a 10 percentage points increase delaying motherhood by 1.4 years on av-
erage (column (b)), and this is reinforced by the gene-environment interaction, ϕ3. In the
case of NEB, however, the G×Pill impact is indistinguishable from zero. The large role
played by pill usage exposure on the timing of motherhood reveals that striking differences
in social norms faced by mothers and daughters in the UK Biobank may trump genetic
influences even after controlling for shared unobserved family characteristics, including
intra-family cultural values that are stable across generations.31

29We restrict the analysis to the oldest daughter when two or more daughters are in the sample. The
raw correlation between mothers and daughters’ PGI A1B is about 0.55.

30The raw intergenerational correlation is sizeable and statistically significant for both outcomes, going
from 0.18 for NEB to 0.28 for A1B, respectively.

31Replacing Pill with Cohort leads to qualitatively similar estimates. These are reported in Appendix
Table A8.
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We close this subsection emphasizing that, irrespective of how we control for unob-
served intra-household environmental factors which are fixed either across sisters (e.g.,
internal socialization and family norms) or within mother-daughter pairs (e.g., parent-
ing habits and family role models), the gene-by-environment estimates invariably suggest
that the genetic effects on the timing of motherhood are strongest when social norms are
more progressive.

5.3 Male Fertility

Although not core to our study, we briefly explore male fertility. This is important for at
least two reasons. One is that we know little about male fertility and its determinants,32

and essentially nothing about the gene-environment interactions that could affect it. The
other reason is that it allows us to qualify our understanding of the gene-by-cohort effect
on female fertility we have elaborated so far. If there is a G×Cohort effect on male
fertility that is mediated by the same factors as its female counterpart, then the same
changes in social norms must affect male and female fertility decisions alike. If instead
this specific gene-by-environment effect for men does not exist or it is not mediated by
the same processes, then male genetic predispositions might have exerted their influence
differently, possibly even before the sexual revolution.

For this analysis, we focus only on NEB and EVER, since information on men’s A1B
is not collected in the UK Biobank. We apply the same sample selections and use the
same variable definitions as those employed for the sample of women described in Section
3 and summarized in Appendix Table A10. Appendix Figure A2 reports the time trends
in the two outcomes by birth cohort, along with the female trends discussed earlier. The
reduction in the number of children ever born and the decline in the proportion of men
who ever had a child are steeper than what we found for women. This uphold the male
retreat-from-fertility phenomenon illustrated by Bratsberg et al. (2022).

Appendix Figure A8, which displays the same trends separating out men in the top
decile from men in the bottom decile of the PGI NEB distribution, shows that the gap
between the two groups of men is relatively stable over time. This suggests that the
gene-by-cohort interactions are likely to be unimportant for male fertility. The estimates
in Appendix Table A11, which are obtained from fitting model (2) on men, confirm this
conjecture. Although the θ1 and θ2 estimates for both outcomes are in line with those
found for women in Table 2, just smaller in magnitude, the impact of G×Cohort is trivial.
The changing times faced by men in the UKB seem to have left their fertility behavior
unchanged.

To check this possibility more directly, we repeat the mediation analysis of subsection
32Some of the recent contributions in this literature include Kearney and Wilson (2018) and Giuntella

et al. (2022). They do not use genetic data.
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5.1 on the sample of men. We keep the same definition of pill exposure, M1 as before,
but the other two mediators — the fraction of individuals with university qualifications
or more by LAD and cohort, M2, and the fraction of 18–30 year old individuals working
in high-skill jobs by LAD and cohort, M3 — are now computed on male data and linked
to each man in the sample when he was 18 years old. The estimates in Appendix Table
A12 are summarized in Figure 4. The small negative direct effects of Cohort on both
outcomes are not explained by our three mediators, with the possible exception of M3

which accounts for about 11% of the cohort effect on EVER among low-fertility-G men,
i.e., those with greater genetic propensity to remain childless.

In sum, male genetic susceptibilities to fertility have likely surfaced before the sex-
ual revolution, when environmental risks were less favorable to female predispositions.
Other factors may have become more conducive to mediating the secular retreat from
fertility among men in the UKB sample, such as deindustrialization, globalization, de-
clining health, and changes in the wage structure (e.g., Huttunen and Kellokumpu, 2016;
Kearney and Wilson, 2018; Giuntella et al., 2022). Pinning down these mechanisms goes
beyond the scope of the paper and is left for future research.

5.4 Gender Role Norms and the Pill Revolution

We conclude with suggestive evidence on the association of our environmental mediators
with gender norms. Ideally, we would like to have a measure of norms collected around
the time when women in the UKB were making their fertility decisions. Unfortunately,
such data do not exist. We thus use data from the British Household Panel Survey and
its successor, the UK Household Longitudinal Survey, covering the 30-year period from
1992 to 2021.

To match the UKB cohort coverage with the BHPS-UKHLS data, we restrict the
analysis to women born between 1935 and 1970. For each individual in this sample, we
have direct information on beliefs about gender roles. In particular, respondents are asked
if they agree with the following five claims: (i) “Pre-school child suffers if mother works”;
(ii) “Family suffers if mother works full-time”; (iii) “Husband and wife should contribute to
household income”; (iv) “Husband should earn, wife should stay at home”; (v) “Employers
should help mothers combine jobs and childcare”. Respondents’ agreement with each of
these statements is rated according to a 5-point scale, where 1=strongly agree, 2=agree,
3=neither agree nor disagree, 4=disagree, and 5=strongly disagree. We analyze each
index separately and also define a comprehensive index by summing responses across the
five questions after inverting the scale for questions (iii) and (v). The summary index
therefore varies between 5 and 25, with higher values indicating more egalitarian norms
between the sexes and lower values capturing more traditional gender role attitudes.

We next average each gender role norm measure across individuals from the same

21



cohort, c, in the same local authority district, j, and label this variable GenderNormsjc.
For each of the five belief variables and the summary measure, we then estimate the
following model:

GenderNormsjc = ψ0 + ψ1M1,jc + ψ2M2,jc + ψ3M3,jc + ηj + νjc (6)

where M1,M2,M3 are defined in subsection 5.1 and refer to contraceptive pill usage, share
of women with college education, and share of women in highly skilled occupations in
local authority district j and cohort c, respectively, and ηj refers to LAD fixed effects. We
do not include cohort fixed effects, because these are absorbed into the three mediators.
Our coefficients of interests are the three ψj’s. A positive estimate would indicate that
areas where women were more exposed to pill usage (ψ1), or to a greater share of female
college graduates (ψ2), or a greater share of women in high-skill occupations (ψ3) are also
the areas with more equal beliefs about gender roles.

The OLS results in Table 8 show that exposure to greater pill diffusion is almost
invariably associated with more egalitarian gender norms. This emerges strongly for four
of the five attitude measures (the exception being in column (c) for the response that
both partners should contribute to household income) and for the summary index in
column (f) of panel A. The correlations of M2 and M3 with GenderNormsjc are instead
much weaker (at least one order of magnitude smaller than in the case of M1), they are
sometimes wrong signed (as in the case of M2 in columns (a) and (b)), and they are
usually statistically indistinguishable from zero.

To strengthen the credibility of these results, we repeat the exercise after replacing
gender role norms with other attitudinal variables, which may be only weakly related
to female empowerment and are therefore expected to be broadly uncorrelated with our
fertility mediators. We label them ‘placebo norms’. These cover a wide range of values
and norm-revealing habits, from wearing a poppy on Remembrance Day (a very popular
display of support in the UK for the service of war veterans and their families) to envi-
ronmental attitudes (e.g., wearing extra clothes rather than turning up heating, or not
making a purchase because of excess packaging), and from social views (such as state
ownership of public services and industries) to attitudes toward car characteristics (such
as style, comfort, safety, and reliability).

The results from this second exercise are in panel B of Table 8. For the items in
columns (a)–(d), responses are dichotomized into a binary variable, taking value 1 if
women are in agreement with each statement, and 0 otherwise. Columns (e) and (f)
show estimates for composite items, ranging from 0 to 5 and from 0 to 2, respectively. In
all cases, we find almost no correlation between these placebo norms and our mediators.
Only two out of the 18 coefficients are statistically significant at the 10% level.

Albeit not causal, the estimates in panel A illustrate that areas that were historically
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exposed to greater pill utilization (from the 1960s through to the 1980s) are also the
areas with more egalitarian gender norms in recent years (from the mid 1990s to the
early 2020s). Although on a much shorter time scale, this result echoes Alesina et al.
(2013)’s findings on the origins of gender roles. It also offers suggestive evidence that
differences in gender attitudes across cohorts are associated with the technological fertility
discoveries which allowed women to benefit from a broader range of life opportunities, in
part facilitated by favorable gene-by-environment interactions.

6 Conclusion

Although fertility is believed to have a strong biological component, economic research on
this relationship is scant. In this paper, for the first time, we systematically investigate
genetic influences on female fertility and document the existence of gene-by-environment
interactions. Using data from the UK Biobank, one of the largest genomic resources in
the world, and leveraging the latest developments in molecular genetics, we summarize
individual genetic endowments in polygenic indexes and capture the broader social envi-
ronment with the year of birth among women born between the late 1930s and the late
1960s.

We find a strong positive impact of genetic predispositions on women’s age at first
birth, the total number of children they have, and the probability they ever had a child;
and we document a strong impact of birth cohort, with later-born women postponing
motherhood more, having fewer children, and facing a higher likelihood of remaining
childless. We also show that cohort of birth modifies the influence of genetic endowments
on all outcomes: the more recent a cohort, the higher the genetic influence. This sug-
gests the presence of a gene-by-environment interplay, which amplifies the direct effect of
genetic endowments and becomes more apparent when social norms and economic condi-
tions enable women to expand the set of their life-course opportunities. This interaction
does not emerge among men, whose genetic predispositions might have emerged when
environmental risks were less advantageous to female (but not male) susceptibilities.

To understand the gene-cohort interactions on female fertility, we decompose the co-
hort effect into a direct impact and an indirect impact, the latter going through three
separate channels (i.e., local exposure to the oral contraceptive diffusion, local exposure to
female college attainment, and local exposure to female employment in highly skilled oc-
cupations) and being allowed to differ by intensity of the polygenic indexes. Pill exposure
turns out to be the primary mediator, as it accounts for half of the positive cohort effect
on age at first birth, especially among women with a high genetic propensity to delay
motherhood, and it entirely explains the negative effect on the probability of ever hav-
ing had a child, especially among women with a high propensity to have children. The
diffusion of the oral contraceptive might have led the emergence of gender-egalitarian
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norms and epitomized one aspect of the sexual revolution that has accompanied women’s
empowerment (Goldin and Katz, 2002).

The gene-by-pill-exposure effect on age at first birth persists even when we analyze
a subsample of sisters and control for sister fixed effects or a subsample of matched
mother-daughter pairs and account for family fixed effects. Taking advantage of the
random variation in gene allocation among first-degree relatives, the former approach
confirms a significant postponement of motherhood even when it is driven by (possibly
small) between-sister differences in exposure to pill diffusion. The latter approach, in
which the differences in environmental risks are much larger by definition, identifies a
substantial impact on age at first birth due to considerable variation in pill exposure
between mothers and daughters.

The existence of gene-environment effects on female fertility, which reinforce the in-
fluence of genetic predispositions and surface more strongly if progressive social norms
expand women’s economic possibilities, may have material implications. With many ad-
vanced countries facing sustained fertility decline, greater labor market insecurity, and
a variety of family policies that shape fertility decisions (e.g., Doepke et al., 2023), new
social environments and new gene-by-environment interactions are likely to arise. These,
in turn, can affect existing, or engender new, inequalities if the impact of the environment
differs by genetic endowment. The evidence that women with greater genetic propensity
to delaying motherhood benefit more from the pill revolution offers a compelling example.

These considerations lead to exciting new areas for future research, with special atten-
tion again given to the role played by genetic endowments. One is to identify the channels
through which women with greater genetic propensity to anticipate birth did not benefit
from the pill revolution: Is it a question of worse information? Or lower economic incen-
tives? Knowing this is policy relevant. Access to oral contraception, which is recognized
as a key step towards equal opportunity (Bailey, 2020), may have to be accompanied by
other interventions if women do not equally take advantage of this technology.33 This
could also be the case for future innovations. Another area is to examine a wider range of
recent external environmental risks, such as the availability of in vitro fertilization treat-
ments (Lundborg et al., 2017), the changing role of gender stereotypes (Bertrand, 2020),
and the emergence of globalization and new forms of work (Autor et al., 2024). Another
yet is to gain a deeper understanding of the male retreat from fertility (Bratsberg et al.,
2022) and childlessness more generally (Baudin et al., 2015).

33For a critical appraisal of the relationship between access to contraception and fertility among rural
households in a developing country, see Dupas et al. (2024).
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Figures and Tables

Figure 1: Fertility Outcomes by Birth Cohort and Genetic Endowment in the UK Biobank
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Notes: Each panel displays the estimated 5-year cohort associations with the outcome for the bottom and
top decile of the outcome-specific PGI. The shaded areas are the corresponding 95% confidence intervals.
‘Early’ (‘late’) fertility G corresponds to the bottom (top) decile of the PGI A1B. ‘Low’ (‘high’) fertility
G corresponds to the bottom (top) decile of the PGI NEB. In blue (red), we indicate women who are
genetically more (less) predisposed to delay motherhood, to have fewer children, and to remain childless.
For NEB and EVER, we restrict the sample to women aged 45 years old or more at the time of interview.
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Figure 2: Mediators
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Notes: The figure in Panel A shows the proportion of childless women who ever took the birth control
pill by broad geographic region of birth and year of birth. The proportion of pill usage corresponds to
when each woman was 18 years old. The figure in Panel B shows the proportion of women with a college
degree by year and region of birth. The figure in Panel C shows the proportion of women whose first
occupation was in a high skill job. As for the pill, the share of women in high skill jobs is calculated by
year and district and linked to each woman when she was 18 years old. The data come from the UK
Biobank, please see Section 4.1 for more details.
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Figure 3: Decomposing the effect of the birth cohort on female fertility outcomes
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Notes: Each panel shows the total effect and the indirect effect for each mediation calculated at the 1st,
5th and 10th decile of the outcome-specific PGI distribution. The mediators are pill exposure (pink),
women with a college degree (green) and women working in high skill jobs (blue). Early (late) fertility G
corresponds to the 1st (10th) decile of the PGI for A1B. High (low) fertility G corresponds to the 10th
(1st) decile of the PGI for NEB. The estimates come from Table 4 and the S.E. are bootstrapped. See
the text for more details.
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Figure 4: Decomposing the effect of the birth cohort on male fertility outcomes

Panel A: Number of children

-.03

-.02

-.01

0

.01

nu
m

be
r o

f c
hi

ld
re

n
 

high fertility G median fertility G low fertility G

Total M1:pill M2:college M3:highskill job

 

Panel B: Ever had children

-.01

-.005

0

pr
op

. h
ad

 c
hi

ld
re

n
 

high fertility G median fertility G low fertility G

Total M1:pill M2:college M3:highskill job

 

Notes: Each panel shows the total effect and the indirect effect for each mediation calculated at the 1st,
5th and 10th decile of the outcome-specific PGI distribution. The mediators are pill exposure (pink),
men with a college degree (green) and men working in high skill jobs (blue). High (low) fertility G
corresponds to the 10th (1st) decile of the PGI for NEB. The estimates come from Table 4 and the S.E.
are bootstrapped. See the text for more details.

35



Table 1: Summary Statistics

Variable Mean SD N
Outcomes

Age at first birth (A1B) 24.87 4.79 46,759
Number of children (NEB) 1.88 1.23 62,680
Ever had children (EVER) 0.83 0.38 62,680

Measures of genetic assessment (G)
PGI A1B 0 1 68,449
PGI NEB 0 1 68,449
PGI EA 0 1 68,449

Mediators (%)
Pill exposure 32.66 27.59 68,449
Female college 32.32 16.72 68,449
Female high skill job 33.56 11.41 68,449

Woman’s early life controls
Own mother smoking during pregnancy (=1) 0.32 0.47 59,113
Own birth weight (kg) 3.22 0.65 44,613
Was breastfed (=1) 0.62 0.49 55,233

Source: UK Biobank.
Notes: SD stands for standard deviation, while N for the number of women in the estimation sample.
EA stands for educational attainment. All mediators are computed on the UK Biobank. ‘Pill exposure’
is measured by the proportion of childless women who used the pill for the first time by age 18 in the
local authority district (LAD) of birth of each woman in the sample. ‘Female college’ corresponds to
the proportion of women with a college degree by LAD and year of birth. ‘Female high skill job’ is the
proportion of women aged 18–30 whose first occupation was a high skill job in a given LAD and linked
to each woman in the UK Biobank when she was 18 years old. Statistics are weighted using sampling
weights.
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Table 2: Baseline Estimates

Age at first birth Number of children Ever had children
(A1B) (NEB) (EVER)

(a) (b) (c)

Cohort (θ1) 0.120*** -0.021*** -0.006***
(0.006) (0.002) (0.0004)

G (θ2) 0.867*** 0.107*** 0.010**
(0.056) (0.017) (0.004)

G×Cohort (θ3) 0.033*** 0.004*** 0.002***
(0.004) (0.001) (0.0003)

Observations 46,759 62,680 62,680
R2 0.1584 0.0502 0.0445
District FEs ✓ ✓ ✓
War FE ✓ ✓ ✓
PCs (γ0) ✓ ✓ ✓
PCs×Cohort (γ1) ✓ ✓ ✓
Mean of Dep. Var. 25.47 1.835 0.825
SD of Dep. Var. 4.550 1.153 0.380

Notes: Obtained from equation (2). Each column corresponds to a specific outcome. G refers to PGI
A1B in column (a) and to PGI NEB in columns (b) and (c). All regressions include: an indicator
variable taking value 1 if a woman was born between 1939 and 1945, and 0 otherwise; district (LAD)
fixed effects; the first 10 (demeaned) principal components (PCs) of the full matrix of SNP data; and
the interactions between each of the 10 PCs and Cohort. All estimates are weighted using the sampling
weights constructed by van Alten et al. (2022). ‘Observations’ is the number of women in the analysis.
Standard errors are robust to heteroskedasticity.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 3: Moderated Mediation Estimates for Age at First Birth

Pill usage Female with Female in Age at
(M1) college degree high-skill first birth

(M2) occupations (A1B)
(M3)

(a) (b) (c) (d)

Cohort 3.509*** 0.668*** 0.654*** 0.047**
(0.008) (0.017) (0.011) (0.021)

M1 (β1) 0.018***
(0.006)

M2 (β2) 0.023***
(0.003)

M3 (β3) -0.004
(0.004)

G (φ) 1.279***
(0.029)

G×M1 (µ1) 0.005***
(0.002)

G×M2 (µ2) 0.006**
(0.003)

G×M3 (µ3) 0.009**
(0.004)

Notes: Obtained from equations (3) and (4). The parameters associated to Cohort in the first row are
α1, α2, and α3 in columns (a), (b), and (c), respectively, and τ in column (d). ‘Pill usage (M1)’ is the
proportion of childless women aged 18 or more who ever took the pill in the local authority district (LAD)
of birth of each woman in the sample. ‘Female with college degree (M2)’ is the proportion of women
with a college degree or more by LAD and year of birth. ‘Female in high skill occupations (M3)’ is the
proportion of women aged 18–30 whose first job was in a high skill occupation by LAD and linked to
each woman in the UK Biobank when she was 18 years old. M1, M2, and M3 are expressed in percentage
points, and β1, β2 and β3 are the corresponding parameters from equation (4). G refers to the PGI A1B.
The number of women in the analysis is 46,759. All regressions include the same variables reported in
the notes to Table 2. The same notes also provide details on sampling weights and standard errors.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 4: Decomposition Estimates

Age at first birth (A1B) Number of children (NEB) Ever had children (EVER)
G1 G5 G10 G1 G5 G10 G1 G5 G10
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Direct effect 0.047** 0.047** 0.047** -0.024*** -0.024*** -0.024*** 0.002 0.002 0.002
[0.027] [0.027] [0.027] [0.000] [0.000] [0.000] [0.202] [0.202] [0.202]

M1 0.039* 0.062** 0.084*** 0.002 0.006 0.009 -0.010*** -0.007*** -0.005***
[0.062] [0.002] [0.0001] [0.763] [0.317] [0.123] [0.000] [0.000] [0.002]

M2 0.010** 0.016*** 0.021*** -0.002** -0.002*** -0.002** -0.001*** -0.001*** -0.0007***
[0.001] [0.000] [0.000] [0.0133] [0.000] [0.031] [0.000] [0.000] [0.002]

M3 -0.009** -0.002 0.005 -0.001 -0.0002 0.001 -0.0003 0.000 0.0003
[0.022] [0.378] [0.235] [0.289] [0.808] [0.534] [0.541] [0.911] [0.380]

Total effect 0.088*** 0.122*** 0.157*** -0.026*** -0.021*** -0.016*** -0.009*** -0.006*** -0.003***
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Observations 46,759 46,759 46,759 62,680 62,680 62,680 62,680 62,680 62,680

Notes: Obtained from equations (3) and (4) and from the results reported in Table 3 for A1B and Appendix Tables A4 and A5 for NEB and EVER, respectively.
Indirect effects refer to M1 (exposure to pill utilization), M2 (exposure to female college education), and M3 (exposure to female high-skill occupations). Total
effect is the sum of the direct effects and the three indirect effects. The effects are moderated by G, for which we report the estimates based on three values of
the G distribution, i.e., G1, G5, and G10, which correspond respectively to the first (bottom), fifth, and tenth (top) decile of PGI A1B for A1B (also defined
early fertility G, medium fertility G, and late fertility G), and PGI NEB for NEB and EVER (also defined low, medium, high fertility G). ‘Observations’ is the
number of women used in the analysis. Bootstrapped p-values are reported in square brackets. For other details on the estimated specifications an sampling
weights, see the notes to Table 2.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 5: Share of the Cohort Effect Accounted for by the Three Mediators

A: Age at first birth (A1B)
Early fertility G Medium fertility G Late fertility G

G1 G5 G10
M1 0.450* 0.506*** 0.538***

(0.242) (0.164) (0.124)
M2 0.119** 0.128*** 0.134***

(0.037) (0.018) (0.023)
M3 -0.103** -0.019 0.029

(0.044) (0.021) (0.025)
B: Number of children (NEB)

Low fertility G Medium fertility G High fertility G
G1 G5 G10

M1 -0.068 -0.263 -0.577
(0.224) (0.258) (0.410)

M2 0.082** 0.100*** 0.128*
(0.034) (0.027) (0.069)

M3 0.055 0.010 -0.063
(0.056) (0.042) (0.102)

C: Ever had children (EVER)
Low fertility G Medium fertility G High fertility G

G1 G5 G10
M1 1.060*** 1.171*** 1.461***

(0.172) (0.248) (0.504)
M2 0.132*** 0.154*** 0.211**

(0.035) (0.029) (0.088)
M3 0.028 -0.004 -0.090

(0.049) (0.041) (0.105)

Notes: Obtained from Table 4 and Figure 3. Bootstrapped standard errors are in parentheses.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 6: Estimates from the Sisters’ Subsample

Age at first birth Number of children Ever had children
(A1B) (NEB) (EVER)

(a) (b) (c) (d) (e) (f)

Pill (ϕ1) 0.032** 0.042*** -0.003 -0.005 -0.001 -0.001
(0.013) (0.016) (0.003) (0.005) (0.001) (0.001)

G (ϕ2) 0.942*** 0.419*** 0.108*** 0.087** 0.031*** 0.025**
(0.084) (0.143) (0.021) (0.037) (0.006) (0.010)

G×Pill (ϕ3) 0.012*** 0.009* 0.002*** 0.001 0.0004* 0.0004
(0.003) (0.005) (0.0006) (0.001) (0.0002) (0.0004)

Cohort -0.025 -0.020 -0.014 -0.012 -0.001 -0.001
(0.0464) (0.057) (0.012) (0.019) (0.004) (0.005)

Observations 6,689 6,413 11,990 11,476 11,990 11,476
R2 0.2256 0.7589 0.0900 0.6822 0.0703 0.6610
District FEs ✓ ✓ ✓ ✓ ✓ ✓
War FE ✓ ✓ ✓ ✓ ✓ ✓
PCs (η0) ✓ ✓ ✓ ✓ ✓ ✓
PCs×Pill (η1) ✓ ✓ ✓ ✓ ✓ ✓
Family FEs (ϑf ) ✓ ✓ ✓
Mean of Dep. Var. 24.99 25.02 1.849 1.847 0.822 0.821
SD of Dep. Var. 4.405 4.392 1.157 1.158 0.382 0.383

Notes: Obtained from model (5). Each column refers to a different regression. G corresponds to PGI A1B in columns (a) and (b) and to PGI NEB in colums
(c)–(f). All specifications include: an indicator variable taking value 1 if a woman was born between 1939 and 1945, and 0 otherwise (War FE); the first 10
principal components of the full matrix of SNP data (PCs), district fixed effects, and the interactions between the first 10 demeaned PCs and pill exposure
(PCs×Pill). Columns (b), (d), and (f) include family FEs. All regressions are weighted using the sampling weights constructed by van Alten et al. (2022).
‘Observations’ is the number of women used in the analysis. Standard errors are robust to heteroskedasticity and clustered at the family level.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 7: Estimates for the Mother-Daughter Subsample

Age at first birth Number of children
(A1B) (NEB)

(a) (b) (c) (d)

Pill (ϕ1) 0.198*** 0.140*** -0.034*** -0.023**
(0.017) (0.028) (0.010) (0.011)

G (ϕ2) 0.366*** 0.283 0.106 0.240***
(0.120) (0.248) (0.066) (0.092)

G×Pill (ϕ3) 0.012*** 0.0150*** 0.001 0.001
(0.003) (0.004) (0.001) (0.002)

Cohort -0.329*** -0.169* 0.042 0.022
(0.053) (0.089) (0.029) (0.033)

Observations 2,222 2,108 1,452 1,352
R2 0.440 0.881 0.442 0.838
District FEs ✓ ✓ ✓ ✓
War FE ✓ ✓ ✓ ✓
PCs (η0) ✓ ✓ ✓ ✓
PCs×Pill (η1) ✓ ✓ ✓ ✓
Family FEs (ϑf ) ✓ ✓
Mean of Dep. Var. 24.33 24.30 2.161 2.178
SD of Dep. Var. 4.742 4.725 1.234 1.229

Notes: See the notes to Table 6 for details.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 8: The Relationship of the Three Environmental Mediators with Gender Role Norms

(a) (b) (c) (d) (e) (f)
A: Gender norms Pre-school child Family does Husband and wife Husband should Employer should Summary index

does not not suffers should both earn, wife help mothers
suffers if if mother contribute to stay at home combine jobs

mother works works FT HH income (reverse scale) and childcare
M1 (Pill) (ψ1) 0.005*** 0.004*** –0.001*** 0.006*** 0.002*** 0.016***

(0.0003) (0.0003) (0.0002) (0.0004) (0.0002) (0.0008)
M2 (College) (ψ2) –0.0005** –0.008*** –0.0001 0.0003 0.0001 –0.0009

(0.0002) (0.0003) (0.0002) (0.0003) (0.0003) (0.0008)
M3 (Skilled jobs) (ψ3) 0.0002 0.0001 –0.0008 0.001** 0.0005 0.0012

(0.0006) (0.0006) (0.0005) (0.005) (0.0003) (0.0016)

Observations 7,341 7,341 7,341 7,341 7,341 7,341
R2 0.2575 0.2502 0.2704 0.3274 0.2927 0.2895
Mean of Dep. Var. 3.05 3.02 1.62 3.62 1.85 13.16
B: Placebo norms Doesn’t buy Wears a poppy on Public services Wears extra, Important Lights off,

because of Remembrance ought to be doesn’t turn features and recycled
excess packaging Day state owned up heating for a car paper

M1 (Pill) (ψ1) 0.0001 –0.0006 -0.0003 –0.0000 0.0008 0.0001
(0.0002) (0.0005) (0.0002) (0.0003) (0.0005) (0.0001)

M2 (College) (ψ2) –0.0004 –0.0002 –0.0001 –0.0000 0.0009* –0.0000
(0.0003) (0.0004) (0.0002) (0.0002) (0.0005) (0.0001)

M3 (Skilled jobs) (ψ3) –0.0002 –0.0009 0.0007* 0.0001 0.0013 0.0002
(0.0005) (0.0009) (0.0004) (0.0006) (0.0009) (0.0003)

Observations 4,081 1,957 5,570 4,081 6,880 7,347
R2 0.3372 0.5373 0.3116 0.3227 0.2369 0.2156
Mean of Dep. Var. 0.24 0.70 0.38 0.77 3.08 1.14

Notes: Obtained from OLS estimation of equation (6). Each column refers to a different regression. Column (e) of panel B refers to the sum of five binary
features when buying a car: comfort, safety, reliability, interior space/boot size, style/design. Column (f) of panel B refers to the sum of two binary measures of
environmental habits: switches lights off in empty rooms and buys recycled products. All regressions include district FEs. ‘Observations’ refers to the number
of district-cohort observations in both panels.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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For Online Publication

Figure A1: Birth Location for Each UK Biobank Respondent

Note: Each dot in the map corresponds to the birth location of a UK Biobank respondent.
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Figure A2: Fertility Outcomes by Sex and Birth Cohort in the UK Biobank
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Notes: Each panel displays time trends in the outcomes: age at first birth (A1B - available only for
women), number of children (NEB), and ever had a child (EVER). Each figure is constructed with the
working samples used in estimation. For NEB and EVER, we restrict the sample to individuals aged 45
years old or more at the time of the interview.
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Figure A3: Distribution of the polygenic indexes
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Notes: The figure plots the standardized kernel-smoothed density of three polygenic indexes for ed-
ucational attainment, age at first birth and number of children (PGI EA, PGI A1B, and PGI NEB,
respectively).
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Figure A4: A Graphical Representation of the Moderated Mediation Model
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Notes: For simplicity, the figure show just one moderator Mj , instead of visualizing all three mediators
used in the analysis.
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Figure A5: Robustness checks on the mediation results for age at first birth
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Notes: Each panel shows the total effect and the indirect effect for each mediation calculated at the 1st,
5th and 10th decile of the PGI for A1B distribution. The mediators are pill exposure (pink), women with
a college degree (green) and women working in high skill jobs (blue). Early (late) fertility G corresponds
to the 1st (10th) decile of the PGI for A1B. The plot baseline corresponds to the baseline mediation
model (as in Figure 3), early includes early life controls, PGI EA is a model where PGI A1B is replaced
by PGI EA, PGIEA_control includes the PGI EA as control, stayers NUTS are individuals which have
not moved from the NUTS2 of birth, cluster is a model where S.E. are clustered at the district level. See
the text for more details. All C.I. are bootstrapped.
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Figure A6: Robustness checks on the mediation results for number of children
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Notes: Each panel shows the total effect and the indirect effect for each mediation calculated at the 1st,
5th and 10th decile of the PGI for NEB distribution. The mediators are pill exposure (pink), women with
a college degree (green) and women working in high skill jobs (blue). High (low) fertility G corresponds
to the 10th (1st) decile of the PGI for NEB. The plot baseline corresponds to the baseline mediation
model, early includes early life controls, PGI EA is a model where PGI NEB is replaced by PGI EA,
PGIEA_control includes the PGI EA as control, stayers NUTS are individuals which have not moved
from the NUTS2 of birth, cluster is a model where S.E. are clustered at the district level. See the text
for more details. All C.I. are bootstrapped.
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Figure A7: Robustness checks on the mediation results for ever had children
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Notes: Each panel shows the total effect and the indirect effect for each mediation calculated at the 1st,
5th and 10th decile of the PGI for NEB distribution. The mediators are pill exposure (pink), women with
a college degree (green) and women working in high skill jobs (blue). High (low) fertility G corresponds
to the 10th (1st) decile of the PGI for NEB. The plot baseline corresponds to the baseline mediation
model, early includes early life controls, PGI EA is a model where PGI NEB is replaced by PGI EA,
PGIEA_control includes the PGI EA as control, stayers NUTS are individuals which have not moved
from the NUTS2 of birth, cluster is a model where S.E. are clustered at the district level. See the text
for more details. All C.I. are bootstrapped.
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Figure A8: Male Fertility Outcomes by Birth Cohort in the UK Biobank
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Notes: Each panel displays time trends in the outcomes for the 1st and the 10th decile of the PGI NEB.
The outcomes are number of children (NEB) and ever had a child (EVER). We restrict the sample to
men aged 45 years old or more at the time of the interview. High (low) fertility G corresponds to the
10th (1st) decile of the PGI for NEB.
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Table A1: Stability of the Polygenic Indexes Across Birth Cohorts

PGI A1B PGI NEB PGI EA PGI A1B PGI NEB PGI EA
Not Std Not Std Not Std

(a) (b) (c) (d) (e) (f)

1940–1944 (cohort 2) -0.006 -0.001 -0.005 0.001 0.004 0.009
(0.030) (0.034) (0.030) (0.032) (0.035) (0.032)

1945–1949 (cohort 3) -0.021 0.025 -0.015 0.002 0.005 0.012
(0.030) (0.033) (0.030) (0.032) (0.034) (0.031)

1950–1954 (cohort 4) -0.048 0.023 -0.047 -0.001 0.008 0.009
(0.030) (0.034) (0.030) (0.032) (0.035) (0.032)

1955–1959 (cohort 5) -0.062** 0.049 -0.052* -0.005 0.008 0.003
(0.031) (0.034) (0.031) (0.033) (0.035) (0.032)

1960–1964 (cohort 6) -0.077** 0.058* -0.069** -0.004 0.008 0.003
(0.031) (0.035) (0.031) (0.033) (0.035) (0.033)

1965–1969 (cohort 7) -0.056 0.075** -0.039 -0.005 0.008 0.002
(0.034) (0.037) (0.034) (0.035) (0.038) (0.035)

Observations 68,449 68,449 68,449 68,449 68,449 68,449

pvalue test cohort2-cohort3 0.382 0.125 0.552 0.955 0.932 0.869
pvalue test cohort2-cohort4 0.021 0.182 0.022 0.952 0.846 0.984
pvalue test cohort2-cohort5 0.003 0.008 0.015 0.776 0.812 0.725
pvalue test cohort2-cohort6 0.000 0.003 0.001 0.813 0.828 0.757
pvalue test cohort2-cohort7 0.038 0.002 0.154 0.822 0.876 0.751
pvalue test cohort3-cohort4 0.114 0.908 0.061 0.902 0.903 0.848
pvalue test cohort3-cohort5 0.021 0.176 0.040 0.718 0.864 0.587
pvalue test cohort3-cohort6 0.003 0.076 0.004 0.761 0.879 0.627
pvalue test cohort3-cohort7 0.133 0.033 0.299 0.780 0.922 0.644
pvalue test cohort4-cohort5 0.453 0.168 0.814 0.816 0.960 0.733
pvalue test cohort4-cohort6 0.139 0.075 0.271 0.853 0.970 0.766
pvalue test cohort4-cohort7 0.743 0.032 0.730 0.856 0.994 0.759
pvalue test cohort5-cohort6 0.458 0.657 0.394 0.973 0.993 0.980
pvalue test cohort5-cohort7 0.798 0.290 0.602 0.997 0.975 0.974
pvalue test cohort6-cohort7 0.396 0.497 0.230 0.980 0.982 0.958

Notes: The table presents estimates from regressions of each polygenic index on 5-years cohort indicators.
The reference cohort corresponds to women born in 1938-39. All regressions include the first 10 principal
components of the full matrix of the SNP data, as well as an indicator variable for cohorts born during
WWII and LAD fixed effects. In columns (a)–(c), ‘PGI Not Std’ corresponds to the unstandardized PGI
by year of birth for each of the three outcomes. In columns (d)–(f), the PGI is standardized and used
throughout the paper. PGI A1B, PGI NEB and PGI EA correspond to the PGI for age at first birth,
number of children, and educational attainment, respectively. The table also reports the p-value of the
test for the differences between cohort coefficients. In all regressions, the mean of the dependent variable
is zero. All regressions are weighted using the sampling weights created by van Alten et al. (2022).
‘Observations’ is the number of women in the analysis. Standard errors are robust to heteroskedasticity.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A2: Cross-Correlations of Outcomes and PGIs

Variables A1B NEB PGI A1B PGI NEB PGI EA
A1B 1.00
NEB -0.26 1.00
PGI A1B 0.26 -0.09 1.00
PGI NEB -0.16 0.11 -0.62 1.00
PGI EA 0.25 -0.06 0.90 -0.36 1.00

Notes: The table reports the cross-correlations of the fertility outcomes under analysis and our three
polygenic indexes (PGIs).
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Table A3: Robustness: Estimates based on Different Sets of Controls

Age at first birth (A1B) Number of children (NEB) Ever had children (EVER)
(a) (b) (c) (d) (e) (f) (g) (h) (i)

Cohort 0.128*** 0.096** 0.095** -0.022*** -0.023** -0.023** -0.007*** -0.006* -0.006*
(0.004) (0.039) (0.039) (0.001) (0.010) (0.010) (0.0003) (0.003) (0.003)

G 0.771*** 1.275*** 1.436*** 0.091*** 0.183** 0.187** 0.018*** 0.037 0.044*
(0.035) (0.249) (0.254) (0.009) (0.073) (0.074) (0.003) (0.023) (0.024)

G×Cohort 0.031*** 0.028*** 0.020*** 0.003*** 0.002*** 0.002** 0.002*** 0.002*** 0.001***
(0.003) (0.003) (0.004) (0.001) (0.001) (0.001) (0.0002) (0.0002) (0.0003)

Observations 48,861 48,861 48,861 65,656 65,656 65,656 65,656 65,656 65,656
R2 0.134 0.150 0.151 0.038 0.050 0.050 0.036 0.050 0.050
District FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
War FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PCs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PCs×Cohort ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls×Cohort,

Controls×G ✓ ✓ ✓ ✓ ✓ ✓
PCs×G ✓ ✓ ✓
Mean of Dep. Var. 25.42 25.42 25.42 1.834 1.834 1.834 0.824 0.824 0.824
SD of Dep. Var. 4.557 4.557 4.557 1.156 1.156 1.156 0.381 0.381 0.381

Notes: Obtained from model (2). Each column corresponds to a different regression. G refers respectively to the PGI A1B for A1B and to PGI NEB for NEB
and EVER. All regressions include: an indicator variable taking value 1 if a woman was born between 1939 and 1945, and 0 otherwise (War FE); the first 10
demeaned principal components of the full matrix of SNP data (PCs), district fixed effects, and the interactions PCs and year of birth (PCs×Cohort). Columns
(a), (d) and (g) reports the baseline estimates. In columns (b), (e), and (h), we also control for the interactions between the controls (war and district fixed
effects) and Cohort, and between the controls and G. Columns (c), (f) and (i) add interactions between PCs and G. All regressions are weighted using the
sampling weights created by van Alten et al. (2022). ‘Observations’ is the number of women used in the analysis. Standard errors are robust to heteroskedasticity.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A4: Moderated mediation estimates for number of children

Pill exposure Fem. college Fem. high-skill Number
jobs of children

(1) (2) (3) (4)

Cohort trend 3.5491*** 0.7161*** 0.8825*** -0.0243***
(0.0088) (0.0148) (0.0115) (0.0059)

Pill exposure 0.0016
(0.0015)

Fem. college -0.0029***
(0.0007)

Fem. high-skill jobs -0.0002
(0.0010)

G 0.1530***
(0.0076)

G×Pill exposure 0.0008*
(0.0005)

G×Fem. college 0.0001
(0.0008)

G×Fem. high-skill jobs 0.0010
(0.0011)

Observations 62,680 62,680 62,680 62,680
District FE ✓ ✓ ✓ ✓
War FE ✓ ✓ ✓ ✓
PCs ✓ ✓ ✓ ✓
Interactions PCs-trend ✓ ✓ ✓ ✓

Notes: Structural equation estimates of the moderated mediation equations (3-4). ‘Pill exposure’ is
measured by the proportion of childless women who used the pill for the first time by age 18 in the
local authority district (LAD) of birth of each woman in the sample. ‘Female college’ corresponds to
the proportion of women with a college degree by LAD and year of birth. ‘Female high skill job’ is the
proportion of women aged 18-30 whose first occupation was a high skill job in every LAD and linked to
each woman in the UK Biobank when she was 18 years old. Pill exposure, female college and female high
skill job are scaled to be in 100 percentage points. G corresponds to the PGI NEB. All regressions include:
an indicator variable taking value 1 if a woman was born between 1939 and 1945, and 0 otherwise; the
first 10 principal components of the full matrix of SNP data, district fixed effects, and the interactions
between the first 10 demeaned PCs and the year of birth trend. All regressions are weighted using the
sampling weights created by van Alten et al. (2022). ‘Observations’ is the number of women used in the
analysis. Standard errors are robust.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A5: Moderated mediation estimates for ever had children

Pill exposure Fem. college Fem. high-skill Ever had
jobs children

(1) (2) (3) (4)

Cohort trend 3.5491*** 0.7161*** 0.8825*** 0.0019
(0.0088) (0.0148) (0.0115) (0.0015)

Pill exposure -0.0020***
(0.0004)

Fem. college -0.0013***
(0.0002)

Fem. high-skill jobs 0.0000
(0.0003)

G 0.0375***
(0.0020)

G×Pill exposure 0.0005***
(0.0002)

G×Fem. college 0.0003
(0.0002)

G×Fem. high-skill jobs 0.0003
(0.0003)

Observations 62,680 62,680 62,680 62,680
District FE ✓ ✓ ✓ ✓
War FE ✓ ✓ ✓ ✓
PCs ✓ ✓ ✓ ✓
Interactions PCs-trend ✓ ✓ ✓ ✓

Notes: Structural equation estimates of the moderated mediation equations (3-4). ‘Pill exposure’ is
measured by the proportion of childless women who used the pill for the first time by age 18 in the
local authority district (LAD) of birth of each woman in the sample. ‘Female college’ corresponds to
the proportion of women with a college degree by LAD and year of birth. ‘Female high skill job’ is the
proportion of women aged 18-30 whose first occupation was a high skill job in every LAD and linked to
each woman in the UK Biobank when she was 18 years old. Pill exposure, female college and female high
skill job are scaled to be in 100 percentage points. G corresponds to the PGI NEB. All regressions include:
an indicator variable taking value 1 if a woman was born between 1939 and 1945, and 0 otherwise; the
first 10 principal components of the full matrix of SNP data, district fixed effects, and the interactions
between the first 10 demeaned PCs and the year of birth trend. All regressions are weighted using the
sampling weights created by van Alten et al. (2022). ‘Observations’ is the number of women used in the
analysis. Standard errors are robust.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A6: Summary Statistics for the Relative Samples

Sisters sample Mother-daughter
pairs sample

Variable Mean SD N Mean SD N

Outcomes
Age at first birth (A1B) 24.68 4.68 9,062 24.78 4.99 2222
Number of children (NEB) 1.85 1.2 12,432 2.14 1.33 1452
Ever had children (EVER) 0.82 0.38 12,432 0.87 0.33 1452

Measures of genetic assessment (G)
PGI A1B -0.11 1.01 13,120 -0.11 1.02 2251
PGI NEB 0.05 1 13,120 0.04 0.99 1480

Measure of environment (%)
Pill exposure 30.01 25.55 13,120
Pill exposure (A1B subsample) 47.82 32.37 2251
Pill exposure (NEB subsample) 40.98 30.99 1480

Notes: SD refers to standard deviation, while N refers to the number of women in the estimation sample.
‘Pill exposure’ is measured by the proportion of childless women who used the pill for the first time by
age 18 in the local authority district (LAD) of birth of each woman in the sample. Statistics are weighted
using the sampling weights.
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Table A7: FORSE TOGLIAMO - NON VIENE PIU’ GxCOHORT!!! Sisters G× Cohort Trend Estimates

Age at first birth Number of children Ever had children
(1) (2) (3) (4) (5) (6)

Cohort trend 0.0868*** 0.1226*** -0.0241*** -0.0280*** -0.0059*** -0.0052***
(0.0149) (0.0243) (0.0032) (0.0053) (0.0011) (0.0017)

G 0.7432*** 0.2834 0.0615* 0.0694 0.0212** 0.0115
(0.1292) (0.2061) (0.0342) (0.0598) (0.0101) (0.0159)

G×Cohort trend 0.0356*** 0.0242 0.0071*** 0.0036 0.0014* 0.0017
(0.0095) (0.0152) (0.0025) (0.0041) (0.0008) (0.0012)

Observations 6,689 6,413 11,990 11,476 11,990 11,476
R-squared 0.2243 0.7581 0.0900 0.6822 0.0701 0.6609
District FE ✓ ✓ ✓ ✓ ✓ ✓
War FE ✓ ✓ ✓ ✓ ✓ ✓
PCs ✓ ✓ ✓ ✓ ✓ ✓
PCs-Cohort trend ✓ ✓ ✓ ✓ ✓ ✓
Family FE ✓ ✓ ✓
Mean of Dep. Var. 24.99 25.02 1.849 1.847 0.822 0.821
SD of De. Var. 4.405 4.392 1.157 1.158 0.382 0.383

Notes: Obtained from the model (5) where E corresponds to the linear cohort of birth. Each column corresponds to a specific outcome. G corresponds respectively
to the PGI A1B for the outcomes A1B, and the PGI NEB for the outcomes NEB and EVER. All columns include: an indicator variable taking value 1 if a woman
was born between 1939 and 1945, and 0 otherwise (War FE); the first 10 principal components of the full matrix of SNP data (PCs), district fixed effects, and
the interactions between the first 10 demeaned PCs and the year of birth trend (PCs-trend). Columns 2, 4 and 6 include family fixed effects. All regressions are
weighted using the sampling weights created by van Alten et al. (2022). ‘Observations’ is the number of women used in the analysis. Standard errors are robust
and clustered at the family level.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A8: FORSE TOGLIAMO!!! Mother-Daughter G× Cohort Trend Estimates

Age at first birth Number of children
(1) (2) (3) (4)

Cohort trend 0.2802*** 0.2735*** -0.0493*** -0.0411***
(0.0197) (0.0248) (0.0084) (0.0092)

G 0.2772* 0.0914 0.1014 0.2319**
(0.1570) (0.2635) (0.0781) (0.0988)

G×Cohort trend 0.0345*** 0.0445*** 0.0021 0.0023
(0.0099) (0.0121) (0.0040) (0.0044)

Observations 2,222 2,108 1,452 1,352
R-squared 0.4164 0.8760 0.4337 0.8357
District FE ✓ ✓ ✓ ✓
War FE ✓ ✓ ✓ ✓
PCs ✓ ✓ ✓ ✓
PCs-Cohort trend ✓ ✓ ✓ ✓
Family FE ✓ ✓
Mean of Dep. Var. 24.33 24.30 2.161 2.178
SD of De. Var. 4.742 4.725 1.234 1.229

Notes: Obtained from the model (5) where E corresponds to the linear cohort of birth. Each column
corresponds to a specific outcome. G corresponds respectively to the PGI A1B for the outcomes A1B,
and the PGI NEB for the outcome NEB. All columns include: an indicator variable taking value 1 if a
woman was born between 1939 and 1945, and 0 otherwise (War FE); the first 10 principal components
of the full matrix of SNP data (PCs), district fixed effects, and the interactions between the first 10
demeaned PCs and the year of birth trend (PCs-trend). Columns 2 and 4 include family fixed effects.
All regressions are weighted using the sampling weights created by van Alten et al. (2022). ‘Observations’
is the number of women used in the analysis. Standard errors are robust and clustered at the family
level.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A9: Pill Estimates

Age at first birth Number of children Ever had children
(1) (2) (3)

Pill exposure 0.0267*** 0.0004 -0.0017***
(0.0033) (0.0010) (0.0003)

G 0.9696*** 0.1086*** 0.0283***
(0.0276) (0.0061) (0.0019)

G×Pill exposure 0.0089*** 0.0008*** 0.0005***
(0.0008) (0.0002) (0.0001)

Cohort trend 0.0346*** -0.0235*** -0.0011
(0.0117) (0.0036) (0.0012)

Observations 48,861 65,656 65,656
R-squared 0.1348 0.0381 0.0368
District FE ✓ ✓ ✓
War FE ✓ ✓ ✓
PCs ✓ ✓ ✓
PCs-Pill exposure ✓ ✓ ✓
Mean of Dep. Var. 25.42 1.834 0.824
SD of Dep. Var. 4.557 1.156 0.381

Notes: Obtained from the pill model (2) where instead of Cohort as a measure of the environment we
use pill usage. Each column corresponds to a specific outcome. G corresponds respectively to the PGI
A1B for the outcomes A1B, and the PGI NEB for the outcomes NEB and EVER. All regressions include:
an indicator variable taking value 1 if a woman was born between 1939 and 1945, and 0 otherwise (War
FE); the first 10 principal components of the full matrix of SNP data (PCs), district fixed effects, and the
interactions between the first 10 demeaned PCs and the pill exposure (PCs-Pill exposure). All regressions
are weighted using the sampling weights created by van Alten et al. (2022). ‘Observations’ is the number
of women used in the analysis. Standard errors are robust.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A10: Summary Statistics for Men

Variable Mean SD N

Outcomes
Number of children (NEB) 1.84 1.29 39,225
Ever had children (EVER) 0.8 0.4 39,225

Measures of genetic assessment (G)
PGI NEB 0 1 58,330

Mediators (%)
Pill exposure 32.07 27.85 58,330
Male college 34.48 17.33 58,330
Male high skill job 43.17 11.92 58,330

Notes: SD refers to standard deviation, while N refers to the number of men in the estimation sample.
All mediators are derived from the UK Biobank. ‘Pill exposure’ is measured by the proportion of childless
women who used the pill for the first time by age 18 in the local authority district (LAD) of birth of
each man in the sample. ‘Male college’ corresponds to the proportion of men with a college degree by
LAD and year of birth. ‘Male high skill job’ is the proportion of men aged 18–30 whose first occupation
was a high skill job in every LAD and linked to each man in the UK Biobank when he was 18 years old.
Statistics are weighted using the sampling weights.
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Table A11: Baseline Estimates for Men

Number of children Ever had children
(1) (2)

Cohort trend -0.0317*** -0.0078***
(0.0022) (0.0007)

G 0.1050*** 0.0227***
(0.0210) (0.0058)

G×Cohort trend 0.0024 0.0009
(0.0022) (0.0006)

Observations 39,225 39,225
R-squared 0.0237 0.0146
District FE ✓ ✓
War FE ✓ ✓
PCs ✓ ✓
PCs-trend ✓ ✓
Mean of Dep. Var. 1.844 0.798
SD of Dep. Var. 1.294 0.401

Notes: Obtained from the baseline model (2) estimated on the sample of men. Each column corresponds
to a specific outcome. G corresponds to the PGI NEB for the outcomes NEB and EVER. All regressions
include: an indicator variable taking value 1 if a man was born between 1939 and 1945, and 0 otherwise
(War FE); the first 10 principal components of the full matrix of SNP data (PCs), district fixed effects,
and the interactions between the first 10 demeaned PCs and the year of birth trend (PCs-trend). All
regressions are weighted using the sampling weights created by van Alten et al. (2022). ‘Observations’
is the number of men used in the analysis. Standard errors are robust.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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Table A12: Decomposition Estimates for Men

Completed fertility Ever had children
G1 G5 G10 G1 G5 G10
(1) (2) (3) (4) (5) (6)

Direct -0.0387*** -0.0387*** -0.0387*** -0.0063*** -0.0063*** -0.0063***
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

M1: Pill exposure 0.0079 0.0081 0.0084 -0.0005 -0.0010 -0.0015
[0.195] [0.129] [0.205] [0.793] [0.512] [0.421]

M2: Male college -0.0005 -0.0000 0.0004 -0.0003 -0.0001 0.0001
[0.594] [0.964] [0.661] [0.282] [0.581] [0.700]

M3: Male high skill job -0.0023 -0.0005 0.0013 -0.0009 -0.0002 0.0006
[0.334] [0.727] [0.502] [0.202] [0.664] [0.325]

Total -0.0336*** -0.0311*** -0.0285*** -0.0081*** -0.0076*** -0.0071***
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Observations 39,225 39,225 39,225 39,225 39,225 39,225

Notes: Obtained from the moderated mediation model (3-4). The table reports the direct effect of the cohort trend on each outcome, the indirect effects coming
from the three mediators (M1: Pill exposure, M2: Male college and M3: Male high skill job), and the Total effect which is the sum of the direct and indirect
effects. Indirect effects are moderated by G we report their estimate based on three values of the G distribution. G1, G5 and G10 correspond respectively to the
first, fifth, and tenth decile of PGI NEB (also defined low, medium, high fertility G). All models include: an indicator variable taking value 1 if a man was born
between 1939 and 1945, and 0 otherwise; district fixed effects; the first 10 principal components of the full matrix of SNP data; and the interactions between the
first 10 demeaned PCs and the year of birth trend. All regressions are weighted using the sampling weights created by van Alten et al. (2022). ‘Observations’ is
the number of men used in the analysis. Bootstrapped p-values are reported in square brackets.
* Significant at 10%; ** significant at 5%; *** significant at 1%.
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