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Abstract

Anticipating future migration dynamics is central to forming reasonable expectations of
economic, demographic and social developments. However, the discussion around which
forecasting methods can provide the most accurate projections of migration flows is still
contested. In this paper we propose a model averaging approach that takes into account three
non-causal models and a state-of-the-art gravity model of migration to exploit the strengths of
all modelling techniques. Using OECD data on bilateral migration flows, we conduct a pseudo
out-of-sample validation exercise to gain insights in the predictive power of the individual
models and their combinations.
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1 Introduction

Migration processes significantly affect economic, demographic and social dynamics. Anticipating
future changes in migration flows across countries is thus particularly important for the design
of migration policy and understanding the effect of human mobility on socioeconomic outcomes.
The discussion concerning adequate forecasting methods for (bilateral) migration flows is far from
settled in the academic literature. Globally, only few governments share detailed information
about inflows and outflows of migrants, and rigorous quantitative research in migration is
thus restricted by data availability about migration patterns and the composition of migration
flows. Such a problem limits the space of applicable methods and increases the uncertainty
of migration forecasts. The existing quantitative literature has evolved around explaining and
predicting migration patterns ranging from sub-national to global geographic scales using several
methodological frameworks. The statistical specifications employed range from causal models,
which aim to understand how changes in drivers of migration affect the outcome, to models that
extrapolate migration patterns based on their past dynamics and persistence patterns, both of
which come with strengths and weaknesses.

By identifying the link between push and pull factors of migration and observed migration
movements, causal models help to understand and quantify the structural behaviour of migration
patterns. The complexity of migration processes has prevented the evolution of a unified theory
of global migration so far. Gravity models have historically provided an established approach to
understanding migration, although their performance in terms of (in-sample) predictive ability
has been heavily criticized (see Beyer and Lotze-Campen (2022)). Gravity models identify
the connection between economic, socio-demographic and geographic variables, and migration
flows (Ramos 2016) and thus allow for the quantitative assessment of scenario-based migration
projections, which could be integrated into alternative future trajectories such as those put forward
by the Shared Socioeconomic Pathways (Benveniste et al. 2021).

Instead of analysing empirically the push and pull factors driving migration patterns, (non-
causal) autoregressive models for migration focus on extrapolating human mobility based on
past trends and the stylized facts of their dynamics. Despite the comparatively good forecasting
performance of those models (see e.g. Azose and Raftery (2015), Welch and Raftery (2022)), they
are not able to generate scenario-based migration projections conditional on particular dynamics
in the determinants of mobility. Furthermore, since these models do not help us understand
drivers of migration and past shocks in migration patterns, which may be unlikely to appear in
the future, can significantly affect the quality of predictions.

In this paper we present a systematic comparison of the out-of-sample predictive ability of
existing models for bilateral migration flows and assess the potential improvements that can
be obtained from aggregating predictions from specifications making use of model averaging
methods (Kapetanios et al. 2006; Raftery et al. 1997). We utilise three non-causal models and
a state-of-the-art gravity-type model and benchmark these specifications against each other to
predict bilateral migration flows in a pseudo out-of-sample validation exercise. Our results suggest
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that among the individuals models a pooled autoregression approach is the best performing and
a variant of the Bayesian flow model proposed by Welch and Raftery 2022 the worst performing
model in terms of MAE and RMSE. That result holds irrespective of the forecasting horizon.
Furthermore we find, that a gravity model approach performs best when it comes to forecast
relative changes of migration flows. Combining the forecasts of the individual model by weights
obtain by regressing the realized values on the forecast of the individual models, leads to a
improvement of the prediction in terms of MAE. We conclude, that model averaging does improve
predictability of bilateral migration flows. The following section describes the data and methods,
section 3 presents the main results, and section 4 concludes.

2 Data & Models

Our models for explaining bilateral migration flows across countries and over time are based on
the OECD’s International Migration Database (OECD International migration database 2022) as
source for mobility data. The data in OECD International migration database (2022) provides
information about migration inflows from almost 200 origin countries to OECD member states.
We only consider migration flows without missing values in the period for 2000 to 2022. This
leads to a panel with 2196 cross sectional units and a temporal coverage of 23 years.

We consider three benchmark non-causal models to create bilateral migration flow forecasts:
(i) simple country-pair specific autoregressive models, (ii) a pooled autoregression model with
persistence parameters which are origin-specific, (iii) a specification in the spirit of Welch and
Raftery (2022) that models country-specific emigration and spatial allocation probabilities by
which the migration outflows are distributed among the possible destination countries. In the first
specification under consideration, we model each individual time series of migration flows from a
given origin country to a given destination country by and autoregressive approach. Denoting the
migration flow from origin country i to destination country j in period t by mi,j,t the model reads
as follows,

mi,j,t = µi,j + γi,jmi,j,t−1 + εi,j,t, with εi,j,t
iid∼ WN(0, σi,j). (1)

We denote this specification as individual autoregression (IAR).
As in both data sets the number of cross sectional units is large in comparison to the number

of observations within a time series, exploiting the information about dynamics across country
pairs rather then utilizing exclusively the information provided by a single time series of bilateral
migration flows appears as an potentially more efficient method to estimate the parameters of the
model. We thus adjust the model described in equation (1), so that information across migration
flows with the same origin country is shared in order to estimate the persistence parameter and
the variance of the model. Formally, this specification is given by

mi,j,t = µi,j + γimi,j,t−1 + εi,t, with εi,t
iid∼ WN(0, σ2i ). (2)
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By exploiting the pooled structure of the data to estimate the parameters of the model, we
lower the information requirements while keeping the model flexible enough to capture complex
migration dynamics. We denote this specification as pooled autoregression (PAR).

In addition to the benchmark autoregressive approaches outlined above, we consider a model
similar to that proposed by Welch and Raftery (2022). They argue that decomposing a model
of bilateral migration flows into a model for outflows and a distribution of those outflows to
destination countries increases forecasting performance. In this setting, bilateral migration flows
depend on emigration probabilities for a given origin country ,δi,t, the (time invariant) probability
of spatial allocation of a migrant form origin country i to destination country j, πi,j , and the
population of the origin country, Pi,t. In such a methodological framework, the conditional
expected value of the bilateral flow mi,j,t is given by

E[mi,j,t|πi,j , δi,t, Pi,t] = πi,jδi,tPi,t. (3)

To estimate the model and obtain draws form the unconditional probability distribution ofmi,j,t,
we utilize a hierarchical Bayesian prior in a specification that assumes that the logarithmic outflow
rates follow an autoregressive process of first order and that the probability vector of destination
probabilities πi,_ := (πi,1, ..., πi,C) is time invariant. Denoting mi,_,t := (mi,1,t, ...,mi,C,t) the
vector of migration flows with origin country i, this specification implies

Observation
{

mi,_,t ∼ MN (δi,tPi,t,πi,_) (4)

Outflows


ln δi,t ∼ N (αi + ϕ ln δi,t−1, ξ

2)

(αi, ϕi,j)
⊤ ∼ N (0, τI2)

ξ2i ∼ IG(a, b)
(5)

Destination Allocation



πi,j = exp ηi,j/
∑

k ̸=i exp ηi,k
ηi,j = ln πi,j

g(πi,1,...,πi,C−1)

ηi,j ∼ N (νi,j , ψ
2
i,j)

νi,j ∼ N (0, τ)

ψ2
i,j ∼ IG(a, b)

(6)

where, MN (·, ·) denotes the multinomial distribution and g(·, ..., ·) the geometric mean.
Following Welch and Raftery 2022 we will refer to that model as Bayesian flow model (BFM).

The fourth model under consideration is a causal gravity-type model. Gravity models are
an established tool to quantify migration patterns, as shown in the work of Karemera and
Davis (2000), Cohen and GoGwilt (2008), Kim and Cohen (2010), Mayda (2010) and Cohen
(2012), among others. The underlying idea is to link bilateral migration flows to socio-economic,
demographic and geographical variables in origin and destination countries. Typically gravity
models rely on the assumption that migration flows depend log-linearly on the regressors under
consideration. Following that assumption gravity models are described by,
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lnmi,j,t = Zi,tθ + Zj,tϕ+ Xi,j,tη + εi,j,t, (7)

where origin-specific variables are summarized in the vector Zi,t, the destination-specific
variables in Zj,t, the bilateral factors in Xi,j,t and εi,j,t is an error term that is assumed to fulfill
the usual assumption of linear models. To be consistent with the assumption of log-linearity Zi,t,
Zj,t and Xi,j,t include the logarithm of migration drivers.

In the specification of the gravity model applied in this paper we consider the total population,
GDP per capita, infant mortality and the dependency ratio to be driving origin and destination
specific factors for migration. As bilateral migration drivers we consider variables measuring
whether origin and destination countries share a common border and whether they share the
same official language as well as the spacial distance. The demographic covariates are sourced
form the UNDESA (2019) World Population Prospects dataset. Geographic data is sourced form
the CEPII (2021) database and economic variables from the World Economic Outlook by the
International Monetary Fund (2022).

3 Results

To gain insights about the predictability of the models outlined above as well as linear combi-
nations of their predictions we proceed as follows: the data is split in the time dimension into
training, hold-out, and pseudo-out-of-sample data. We estimate the models on the test data
to generate predictions for the hold out data. Based on those predictions we calculate weights
by different methods that we subsequently use to combined forecast for the pseudo-out-of-sample
data.1 Finally the predictions for the pseudo-out-of-sample data obtained by the individual model
and their combination is compared with the realized flows and mean absolute error and root mean
squared error are calculated as prediction validation metrics. This procedure is repeated for 1-,2-
and 3-steps ahead forecasts. The results are reported in Table (1).

The results suggest that among the individuals models the performance of the pooled and
individual autoregression is similar and both outperform the Bayesian flow model which in turn
outperforms the gravity model. This holds irrespectively of the forecasting horizon and validation
metric. Among the averaged forecasts we find that calculated weights by IC and BMA leads
to corner solution were all weight is allocated to the best performing model in hold-out period.
Furthermore we find that utilizing MSE or MAE performs similarly and leads to the best (non
degenerated) averaged forecasts. This holds irrespectively of the forecasting horizon and validation
metric. However, non of the combined forecast outperforms the best performing individual model.
Thus in the current state of the project we can not provide evidence that model averaging increases
predictive ability. This however can be subject to the specific data set under consideration and
further investigation should check the robustness of this finding for different data sets.

1The details of the different model averaging approach are outlined in the appendix.
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Model 1-step 2-step 3-step
MAE RMSE MAE RMSE MAE RMSE

Individual Forecasts
IAR 101.33 100.00 103.37 100.11 106.17 100.78
PAR 100.00 100.18 100.00 100.00 100.00 100.00
GM 271.77 125.04 240.31 124.08 234.65 123.84
BFM 135.09 102.88 123.86 102.01 138.41 106.95

Averaged Forecasts
M 128.65 102.04 117.85 101.34 114.37 102.43
TM 111.46 101.02 106.57 100.56 110.80 103.57
MSE 100.54 100.03 100.81 100.10 100.39 101.62
MAE 104.26 100.21 104.19 100.07 103.29 101.66
OLS 118.52 101.12 110.72 100.58 108.13 101.78
IC 101.33 100.18 100.00 100.00 100.00 100.00
BMA 101.33 100.18 100.00 100.00 100.00 100.00

Table 1: Mean absolute error (MAE) and root mean squared error (RMSE) of observed and
predicted migration flows for 1-, 2- and 3-steps ahead predictions (minimum

normalized to 100.00).

4 Conclusion

In this paper we outline the main ideas behind causal and non-causal modeling techniques for
migration flows. As the question of how to model migration is yet far from being settled,
forecasts based on individual modeling techniques embed a high amount of model uncertainty
into predictions. Following several approach to combine forecasts, we average the forecasts of the
models under consideration and evaluate the predictability of individual and combined predictions
in a pseudo out-of-sample forecasting exercise.

Applying this approach to bilateral migration flow data provided by the OECD suggests that
among the individual models a simple pooled autoregressive model where information is shared
across observations with the same origin country performs best. Furthermore, we find, a model
averaging approach based on mean squared error and mean absolute error performs similarly and
leads to the best averaged forecasts. However the current results do not proved evidence that
model averaging leads to better predictive performance than utilizing individual models. This
motives robustness checks of the findings for different data set.
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5 Appendix

To introduce some notation we assume that the combinations of forecasts are given by,

ms
τ+h =

n∑
k=1

ωs
τ+h,km̂τ+h,k, (8)

where m̂t3,k denotes the vector of h-steps-ahead bilateral migration flow predictions obtained by
model k, ωs

τ+h,k is the weight of the h-step ahead prediction of model k and the respective method
that is used to calculate the weights which is denoted by superscript s. Finally ms

τ+h denotes the
averaged h-steps-ahead predictions based on weight-method s. The approaches that we apply to
obtain the weights in equation (8) are,

1. the unweighted mean of the forecasts (M). Here,

ωmean
τ+h,k =

1

n
, (9)

where n denotes the number of models.

2. the trimmed mean (TM). In this case we take the unweighted average of the models excluding
the models that performed best and worst (in terms of RMSE) in predicting the hold-out
data. Here,

ωtmean
τ+h,k =

1

n− 2
. (10)

3. calculating the weights according to the mean squared error of the individual predictions
(MSE). Here,

ωMSE
τ+h,k =

MSE−1
τ+h,k∑n

k=1MSE−1
τ+h,k

, (11)

where MSEτ+h,k = ||m̂τ+h,k − mτ+h,k||22/d and d denotes the dimensionality of the vector
mτ+h,k.

4. calculating the weights according to the mean absolute error of the individual predictions
(MAE). Here,

ωMAE
τ+h,k =

MAE−1
τ+h,k∑n

k=1MAE−1
τ+h,k

, (12)

where MAEτ+h,k = ||m̂τ+h,k − mτ+h,k||1/d and d is defined as above.
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5. estimating the weights by OLS (OLS). Here,

ωOLS
τ+h,k =

exp(ω̂τ+h,k)∑n
k=1 exp(ω̂τ+h,k)

(13)

where ω̂τ+h,k corresponds to its OLS estimate obtained by estimating (8) with an additional
constant regressor.

6. calculating the weights according to an out-of-sample information criteria as outlined in
Kapetanios et al. 2006 (IC). Here,

ωIC
τ+h,k =

exp(−1
2Ψτ+h,k)∑n

k=1 exp(−
1
2Ψτ+h,k)

, (14)

where Ψτ+h,k = ϕτ+h,k−minj∈{1,...,n}{ϕτ+h,j} and ϕτ+h,k is the concentrated log-likelihood of
the model based on the root mean squared forecasting error (RMSE), i.e. ϕτ+h,k = − d

ln σ̃τ+h,k

with σ̃τ+h,k = ||m̂τ+h,k − mτ+h,k||2/
√
d = RMSE and d is defined as above.

7. calculating the weights based on predictive Bayesian model averaging (BMA). Here,

ωBMA
τ+h,k =

d
p1−pk

2

(
σ̃τ+h,1

σ̃τ+h,k

) d
2

∑n
k=1 d

p1−pl
2

(
σ̃τ+h,1

σ̃τ+h,k

) d
2

, (15)

where σ̃τ+h,i is defined as above.
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