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After the Rain - Understanding the Link Between Flood Exposure and 

Child Undernutrition in West Africa 

West Africa1 is one of the world’s most climate-vulnerable regions, where the frequency and 

intensity of extreme weather events are rising rapidly. Although the region contributes minimally 

to global greenhouse gas emissions, it endures a disproportionate share of the adverse effects of 

climate change. Temperatures are rising at a faster rate than the global average, and rainfall patterns 

have become increasingly erratic (USAID, 2018). While the region was once primarily associated 

with prolonged droughts, particularly in the Sahel,2 West Africa now faces an important increase 

in the frequency and severity of flooding events (Barry et al., 2018; Ekolu et al., 2022; Kennedy 

et al., 2017; Nicholson et al., 2018; Nka et al., 2015; Sylla et al., 2016; Thomas & Nigam, 2018). 

Floods are now more frequent and intense, as well as intensified in magnitude and duration, 

causing a greater number of people to be directly and indirectly affected by climate-related shocks. 

Between 2011 and 2021, more than 14 million people were affected by flooding events across the 

region, an increase of approximately 7 million compared to the previous decade (CRED, 2025).3 

The growing unpredictability of these events is especially concerning for the region as a whole 

and, in particular, Sahelian countries, where climate volatility exacerbates long-standing 

development challenges and strains institutional capacities for climate-related shock preparedness 

and response. 

 

1 This region consists of Benin, Burkina Faso, Cape Verde, Côte d'Ivoire, The Gambia, Ghana, Guinea, Guinea-
Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, and Togo. 

2 The Sahel region encompasses West African countries such as Senegal, Gambia, Mauritania, Guinea, Burkina 
Faso, Niger, and Nigeria. 

3 This is estimated to represent 3 to 4% of West Africa’s total population during that period, based on population 
growth estimates from approximately 350 million in 2011 to over 420 million in 2021 (United Nations, 2025) 



Page | 2  
 

 West Africa's vulnerability to climate shocks is not rooted only in it’s increase environmental 

exposure but also in persistent structural inequalities. Widespread high poverty rates, weak 

infrastructure, and limited institutional capacity make it difficult for countries in the region to 

prepare for or effectively respond to climate-related shocks (Cervigni et al., 2015, 2017; UN et al., 

2021). As the region continues to be one of the poorest in the world,4 it also continues to experience 

high levels of food insecurity. In 2023, approximately 45 million people were classified as food 

insecure, highlighting the level of vulnerability across the region (AFD, 2023).5 Rapid 

urbanization, inadequate water, sanitation, and hygiene (WASH) systems, and unplanned 

settlement patterns, especially in newly classified peri-urban areas, further exacerbate the impact 

of extreme weather events, such as floods, placing weaker infrastructure under even greater strain. 

Therefore, families across the region are experiencing higher levels of precarity, and exposure to 

floods poses an important threat to the long-term well-being of vulnerable individuals. 

Children are among the most vulnerable to the rising climate crisis. They are confronted with 

heightened biological vulnerability to both disease and undernutrition and are often the least 

protected during emergencies. Although West African children represent only 10% of the world’s 

child population, they account for a disproportionate share of global child mortality, malnutrition, 

and limited educational completion (UNICEF, 2024). In 2021, the region was home to a large share 

of the under-five deaths and the world’s stunted children (UNICEF, 2021). Twelve out of sixteen 

countries in West Africa rank among the thirty most climate-vulnerable nations for children  

 

4 It is estimated that in 2025, 8 of the 16 countries in the West African region were among the 20 poorest countries 
in the world. This includes Niger, Liberia, Sierra Leone, Mali, Burkina Faso, The Gambia, Guinea-Bissau and Nigeria 
(Focus Economics, 2024). 

5 This represents approximately 10% of West Africa’s estimated population of 446 million in 2023 (World 
Population Prospects, 2025). 
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(Boutin et al., 2021).6 In 2024 alone, extreme rainfall displaced four million people and disrupted 

education for over ten million children across several countries, including Niger, Nigeria, Mali, 

and the DRC (UNICEF, 2024). As climate change continues to destabilize weather systems, 

children’s lives and well-being will remain threatened. 

Although climate-related risks in West Africa have become increasingly well documented, the 

specific relationship between flooding and child nutrition continues to be underexplored. Much of 

the existing literature on climate shocks and malnutrition has focused on South Asia, particularly 

Bangladesh (Baten et al., 2020a; Goudet et al., 2011; Rahman et al., 2024), India (Rodriguez-

Llanes et al., 2011, 2016), Nepal (Gaire et al., 2016), and Pakistan (Hossain et al., 2013). Within 

the West African context, most studies have been confined to single-country analyses and have 

primarily examined the economic consequences of climate variability, such as agricultural 

productivity, household consumption, or poverty levels (Atanga & Tankpa, 2021; Brown & 

Crawford, 2008; Müller et al., 2023; Sawadogo et al., 2024). When cross-country studies in sub-

Saharan Africa do exist, they often rely on broader indicators of climate variability, such as 

deviations in rainfall or temperature (Davenport et al., 2017; Kemajou Njatang et al., 2023; Thiede 

& Strube, 2020), which are unable to explicitly capture the abrupt effects of flooding events. 

Moreover, most studies continue to emphasize drought as the dominant climate risk in the region 

(Cooper et al., 2019; Hoddinott & Kinsey, 2001; Mason et al., 2011), leaving the impacts floods 

on population health relatively understudied despite their growing prevalence and severity. This 

has resulted in a limited and fragmented body of research focused on West Africa.  

 

6 This includes Benin, Burkina Faso, Cote d’Ivoire, Guinea, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, 
Senegal, Sierra Leone and Togo. 
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This represents a significant limitation in the existing literature, given the distinct and severe 

nature of flooding as a climate-related shock. Unlike gradual or seasonal climate stressors observed 

through climate-variability, flooding constitutes a sudden-onset, high-impact event that can 

severely disrupt infrastructure, displace families, contaminate water sources, damage agricultural 

land, undermine household food security, and impede access to health services. These disruptions 

have important implications for acute forms of childhood malnutrition, especially wasting, which 

reflects short-term nutritional deprivation and physiological stress. While broader indicators of 

climate such as rainfall variability provide important insight for understanding the impacts of long-

term or seasonal trends, these are often unable to adequately reflect the immediate and severe 

conditions caused by flooding events. As such, a critical empirical gap persists in the literature, as 

relatively few studies examine the effects of flooding on child nutritional outcomes in West Africa. 

As flooding events become a more frequent and prominent threat in this region of Africa, 

understanding its impacts on child health is the key for developing targeted adaptation and 

mitigation strategies. Therefore, this study aims to address this gap by examining the impact of 

flood exposure on childhood acute malnutrition across West Africa, expanding our knowledge of 

how environmental shocks interact with health vulnerabilities in one of the world’s most climate-

sensitive regions. 

Conceptual framework 

Flooding is a climate-related shock that poses both immediate and long-term risks to children’s 

health and nutrition. It heightens exposure to infectious diseases, weakens household economies, 

disrupts food systems, and restricts individuals’ access to essential health services. These climate 

shocks have important consequences in settings such as West Africa, where existing climate and 
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food security vulnerabilities are exacerbated by weak infrastructure, high dependence to 

agriculture and limited institutional capacity to mitigate the impacts of environmental hazards. 

Floods can pose a direct threat to children’s and caregivers’ health through increased morbidity 

and mortality. Drowning and physical shock are immediate risks of flooding events, while longer-

term health threats arise from the propagation of waterborne and vector-borne diseases following 

a flood. Children recently exposed to floods often face a high risk of infections such as cholera 

and malaria, which can compromise children’s nutritional status through repeated periods of 

diarrhea and fever (Mallett & Etzel, 2018; Naing et al., 2019; Rahman et al., 2024; Sur et al., 2000; 

Wang et al., 2023). For example, Mallett and Etzel (2018) found that floods were often associated 

with significant increases in malaria-related morbidities and mortality among exposed children, 

while Helldén et al. (2021) highlight how shifts in short-term weather patterns, including flooding, 

create favourable conditions for disease transmission and are strongly associated with 

undernourishment.7  

Beyond the immediate health impacts, floods can also disrupt the economic foundations that 

support household food security and child nutrition. In agrarian economies such as those in much 

of West Africa, floods can destroy crops, kill livestock populations, and impair soil fertility, 

directly undermining household agricultural output (Alderman et al., 2012; Carpena, 2019; 

Dimitrova & Muttarak, 2020). These disruptions result in significant income disruptions and the 

loss of resources. In some cases, affected families may be forced to redirect household resources 

 

7 While mortality associated with flooding events may lead to an underestimation of the actual impact of floods 
on child nutrition, as the most vulnerable children may not survive to be included in survey samples, the analysis still 
captures broader effects among surviving children, offering critical insight into the health burdens that persist after 
flood exposure.  
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toward repairing their damaged home, replacing lost assets, or relocating household goods, which 

can divert essential household resources away from critical early childhood needs such as 

nutritious food, preventive services, and medical care. Moreover, flooding often disrupts local 

markets, constraining food availability and driving up the prices of basic goods, which can 

exacerbate nutritional stress among young children, even in non-agricultural households (Arndt et 

al., 2012; Pelser et al., 2022). These economic pressures may lead families to ration food, reduce 

meal frequency, or lower dietary diversity, all of which have adverse implications for child growth, 

especially during early developmental periods when nutritional demands are the highest. 

Flooding can also put a strain on the supply of healthcare and essential public services. The 

destructions of health facilities, as well as damages to road networks, and sanitation systems can 

increase the cost and difficulty of daily life activities and accessing care, particularly in rural areas 

(Amankwaa & Gough, 2023; Davis et al., 2010). Infrastructural damage not only limits the 

availability of emergency services but also hampers the delivery of maternal and child health 

interventions, such as immunizations, as well as nutritional and antenatal care (Baten et al., 2020a; 

Masbi et al., 2024; Salam et al., 2023). These challenges are further exacerbated in West Africa, 

where rapid urbanization, poor WASH infrastructure, and unplanned settlement patterns contribute 

to the region’s heightened vulnerability to floods. In such settings, fragile institutional systems are 

placed under additional pressure during flooding events, which further constrain institutional 

capacity to respond and deepen the vulnerabilities of populations. The breakdown of WASH 

systems also elevates children’s vulnerability to infectious diseases, thereby intensifying the 

nutritional and health burdens of children in flood-affected regions.  

Together, these interconnected pathways through which climate-related shocks impact 

populations highlight the complex ways in which flooding impacts child nutrition, particularly 
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through its impact on weight-for-height, a sensitive indicator of acute malnutrition. A weight-for-

height z-score below -2 indicates wasting, which reflects recent weight loss or insufficient weight 

gain and is commonly caused by the mechanisms outlined above: illness, household economic 

shocks, service disruptions, and compromised care environments. This study builds on this 

conceptual foundation to empirically examine how recent flood exposure contributes to acute 

nutritional vulnerability among children across West African countries.  

The Heterogenous Effects of Flood Exposure 

The relationship between flooding and child nutritional outcomes is not likely to be uniform 

across populations. Instead, it is likely shaped by a range of intersecting social, biological, and 

structural factors that condition both exposure to risk and the capacity to cope with this 

phenomenon. To better understand the varying and complex effects of flooding events, this study 

examines how the impact of recent flood exposure varies across key sociodemographic groups. 

Children’s biological characteristics, such as age and sex, may influence their vulnerability to 

nutritional stress in very distinct ways. Specifically, the association between recent flood exposure 

and children’s weight may vary by children’s sex, as gender discrimination may influence how 

parents ensure children’s safety from the adverse effects of flooding (Block et al., 2004; Tiwari et 

al., 2017), although there is little evidence of discriminatory practices in sub-Saharan Africa. The 

association between recent flood exposure and children’s weight may also vary based on children’s 

age, as young children are more physiologically susceptible to infections, nutrient loss, and growth 

impairment, making them particularly vulnerable to disruptions in food and health systems. 

The socio-economic dimensions of the household environments are also factors that could 

potentially mediate the effects of flooding, as well as childhood malnutrition. Mothers’ education, 
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for instance, is strongly associated with children’s health, as typically more educated mothers are 

better equipped to seek help, navigate and access services, and adjust their caregiving 

responsibilities when experiencing stressful events (Gbratto-Dobe & Segnon, 2025; Greenaway et 

al., 2012; Iftikhar et al., 2017; Ohonba et al., 2019). Mothers’ employment can also have an 

important impact on children’s health after a flooding occurrence. Children from agricultural 

households may experience higher risk associated with flooding events due to damaged crops, 

reduced food availability within affected families, and income constraints (Nankinga et al., 2019; 

Ukwuani & Suchindran, 2003). In these types of situations, the time that mothers dedicate to 

caregiving may also be reduced due to them now being required to participate in the household's 

recovery efforts or explore alternative income-generating activities. In turn, this would potentially 

limit the attention mother’s would give to their children’s feeding, hygiene, and healthcare needs. 

Household wealth level can also help mediate or deepen the impact of environmental shocks on 

children’s nutrition (Chalasani & Rutstein, 2014; Lartey et al., 2016). Families with higher wealth 

may have greater access to food stocks, healthcare, and safer housing, all of which can buffer the 

impact of flooding. Similarly, children in lower-income households could be more likely to 

experience heightened risks. Finally, flood exposure could differ between urban and rural settings 

(Datar et al., 2013; Rodriguez-Llanes et al., 2016). While urban households may face higher risks 

of disease transmission due to higher population density, rural households may experience more 

prolonged disruptions in food systems and health service delivery. 

By examining these dimensions together, this paper applies an intersectional lens to identify 

how social, biological, and structural characteristics could mediate the impact of flood exposure 

on children’s nutritional vulnerability. This approach not only aims to reveal the differential effects 
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within the population but also provides a deeper understanding of the compounded risks 

experienced by those at multiple points of disadvantage. 

Data and methods: 

This study utilizes child anthropometric and socioeconomic data from the Demographic and 

Health Surveys (DHS) program, which has collected nationally representative data on population 

health and nutrition across more than 90 countries since the 1980s (DHS, 2025). The DHS program 

is widely recognized for its rigorous survey methodology, high-quality data collection standards, 

and comprehensive coverage of demographic and health indicators. These surveys provide a 

valuable source of information for analyzing child nutritional outcomes, as it collects data on the 

weight and height of children, along with important demographic and socioeconomic information 

about the children’s households.  

The pooled dataset consisted of 457,342 children aged 0–59 months across all DHS surveys 

conducted in 12 West African countries between 2000 and 2023. This includes Benin, Burkina 

Faso, Côte d'Ivoire, Gambia, Ghana, Guinea, Liberia, Mali, Niger, Nigeria, Senegal, and Sierra 

Leone. The analytical sample was then restricted to DHS surveys, where anthropometric 

measurements for children aged 0–59 months were collected. Observations flagged by the DHS 

(13,590) and observations with missing anthropometric information (169,963) were excluded from 

the analytical sample due to sampling procedures.8 Observations with biologically implausible 

anthropometric values were also excluded from the analytical sample. Specifically, children with 

 

8 Anthropometric information was missing for a subgroup of children in the original sample for multiple reasons, 
according to the DHS data records. Specifically, based on DHS records, among the 169,963 children with missing 
weight measurements, the most common reasons provided was that no measurement was recorded in the household 
roster (76.01%), followed by the child dying before the survey (15.93%). Other reasons (4.02%) and refusal by the 
child or mother (1.68%) were additional reasons why the data was recorded as missing. 
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weight-for-height z-scores (WHZ) greater than 5 (2,874) or ages in days outside plausible limits 

(65) were excluded from the analytical sample. After applying these restrictions, the final 

analytical sample consisted of 270,850 child records drawn from 44 DHS surveys conducted in the 

selected 12 West African countries over a 23-year study period. As recommended by the DHS 

program, sampling weights were applied in all analyses to account for the complex survey design 

and ensure nationally representative estimates.  

Flood exposure is measured using two complementary sources: the Geocoded Disasters 

(GDIS) Dataset and the Emergency Events Database (EM-DAT). The GDIS dataset serves as the 

primary data source for constructing the flood exposure variable. Developed as a geospatial 

extension of EM-DAT, the GDIS provides province-level geographic coordinates for disaster-

affected areas. Moreover, by providing standardized information on the geographic location and 

year of disaster events, this dataset allows me to spatially and temporally match flood occurrences 

with children in the DHS sample. This matching process forms the basis for constructing a child-

level measure of flood exposure. 

To supplement the geospatial information provided by the GDIS, I incorporate data from the 

EM-DAT database. Maintained by the Centre for Research on the Epidemiology of Disasters 

(CRED) in collaboration with the World Health Organization (WHO), EM-DAT is a globally 

recognized repository of disaster-related data widely used in disaster and public health research 

(Baten et al., 2020b; Datar et al., 2013). It provides detailed records on the location, timing 

(including day, month, and year), and human impact of natural and human-made disasters (Lee et 

al., 2024). A disaster is recorded in EM-DAT if it meets at least one of the following criteria: (i) 10 

or more deaths, (ii) 100 or more individuals affected, (iii) a declared state of emergency, or (iv) a 

request for international assistance. I integrate data from the EM-DAT database in two key ways, 
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both of which are essential for accurately capturing children’s and provinces’ recent exposure to a 

flooding event. First, I use the EM-DAT database to obtain the start and end dates of each flooding 

event, which are not available in the GDIS dataset. This additional temporal information enables 

precise identification of whether a flood occurred within the 12-month window to the survey, 

which is critical for the classification of children recently exposed to a flooding event. Second, 

because the GDIS only includes disaster occurrences up to 2018, I use the EM-DAT database to 

incorporate flood events occurring between 2019 and 2023. These dates are provided in the EM-

DAT database alongside disaster information including the location of the events, the number of 

affected people and the total cost of damages. These more recent events are then harmonized with 

earlier disaster records to ensure consistency in exposure measurement and matched by region and 

year to the DHS data.  

By integrating EM-DAT and GDIS, this study ensures a systematic and spatially accurate 

assessment of flood exposure. This approach also strengthens the analytical framework by 

enabling a more precise regional estimation of the relationship between flood exposure and child 

nutritional outcomes from the DHS across West Africa. 

Child Level Measures 

 The dependent variables used in these analyses are 1) a continuous measure of weight-for-

height (WHZ) and 2) a dichotomous measure of wasting, defined as a WHZ of < -2. Weight-for-

height z-scores are calculated using the World Health Organization (WHO) growth standards and 

are directly provided by the DHS. WHZ reflects the child’s body mass in relation to height, 

allowing for the detection of acute nutritional stress. A lower WHZ indicates recent weight loss or 

insufficient weight gain, typically resulting from short-term disruptions to food intake, illness, or 

caregiving practices—all of which are commonly exacerbated during and after flooding events. 
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The binary wasting indicator identifies children who fall below the threshold for acute 

malnutrition, highlighting those at elevated risk of illness and mortality. Together, these indicators 

of acute malnutrition capture dimensions of short-term nutritional vulnerability and are well-suited 

for assessing the immediate impacts of environmental shocks such as floods.  

The independent variable of interest for the child-level analyses is flood exposure. Specifically, 

to assess the short-term impact of flooding on child nutritional outcomes, I constructed a binary 

indicator of recent flood exposure, defined as exposure to at least one flooding event occurring 

within the 12 months prior to the DHS interview, including the month of the interview. This 

measure was developed using spatial and temporal information from the GDIS and EM-DAT 

datasets. First, I identified whether each child resided in a province where at least one flood event 

had been recorded during the relevant 12-month window. Second, I used the start and end dates of 

each flood event, obtained from EM-DAT, to determine whether the child was alive at the time of 

the flood. A child was coded as exposed (1) if they were alive and lived in a flood-affected region 

in the 12 months before the DHS interview. Children were coded as not exposed (0) if they did not 

live in a flood-affected at the time of the DHS data collection or were born after the identified 

flooding event. The dummy variable approach, which captures whether at least one flood occurred 

in a child’s region within the defined time frame, allows me to avoid double counting a flood that 

may have occurred over multiple months or recurrent flooding events in the same province. While 

this measure does not capture variation in flood intensity, this limitation is mitigated by the fact 

that less than 2% of children in the sample experienced more than one flood in the 12-month 

period, suggesting that the prevalence of repeated exposure is low and unlikely to bias the findings. 

The child-level analyses control for a set of childhood, maternal and household characteristics 

that may affect the relationship between recent flood exposure and nutritional outcomes. 
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Childhood controls for my analyses include the child’s sex (0 = male, 1 = female), age in months 

(0-59 continuous), birth order (1-25 continuous), and the number of co-residing children under the 

age of five (continuous). These variables aim to capture key dimensions of child development, 

caregiving context, and household demographic composition that may influence both individual 

vulnerability and intra-household competition for resources and affect children’s nutritional status. 

Maternal-level controls are the mother’s age (continuous), educational attainment and employment 

status. Educational attainment was recoded from four original DHS categories into three analytical 

groups: (0) no education, (1) primary education, and (2) secondary education or higher. Mother’s 

employment status was coded into three categories: (0) unemployed, (1) employed in the 

agricultural sector, and (2) employed in the non-agricultural sector. Mother’s employment status 

was created using both the mother’s current work status and reported occupation to reflect 

women’s labour force engagement more accurately. Finally, household-level controls include the 

wealth index, which was collapsed from the original DHS wealth quintiles into three categories 

(poor, middle, and rich), and a binary measure of urban (0) and rural (1) residence.  

To account for unobserved spatial and temporal heterogeneity, I also include province and time 

controls. For my province control measure, I harmonized provincial administrative units across 

DHS waves by using the most recent DHS boundaries for each country as the reference framework. 

Earlier DHS waves were matched to the most recent boundaries using geospatial mapping 

techniques, whereby cluster-level GPS coordinates from older surveys were overlaid onto the 

updated DHS regional divisions.9 This process ensures that regions are consistently defined across 

 

9 To ensure spatial consistency across survey waves, earlier DHS clusters were matched to the most recent regional 
boundaries available through the DHS Program’s modelled administrative surfaces. These boundaries are based on 
DHS-modeled surfaces used for survey data collection and are available at 
https://spatialdata.dhsprogram.com/boundaries. Specifically, Benin 2001 was overlaid and matched to the 2017 

https://spatialdata.dhsprogram.com/boundaries
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time, allowing for more reliable estimation of time-invariant provincial characteristics such as 

baseline infrastructure, service availability, and historical exposure to environmental shocks. The 

province control measure captures the provincial characteristics of the 118 provinces across the 12 

West African countries. The provinces across the studied West African countries can be broken 

down as follow: 12 regions in Benin, 13 regions in Burkina Faso, 14 regions in Côte d'Ivoire, eight 

regions in Gambia, 16 regions in Ghana, eight regions in Guinea, five regions in Liberia, nine 

regions in Mali,10 eight regions in Niger, six regions in Nigeria, 14 regions in Senegal, and five 

regions in Sierra Leone.   

Temporal variation is controlled for using a categorical variable grouped into five intervals 

based on the DHS survey year: 2000–2004, 2005–2009, 2010–2014, 2015–2019, and 2020 

onward. These time controls account for trends in nutritional outcomes, national development 

trajectories, and improvements in health infrastructure that may independently influence child 

nutrition, irrespective of flood exposure. 

Statistical models 

To estimate the impact of flood exposure on children's nutritional status, I employ a series of 

linear and logistic regression models. For the continuous nutritional outcome of weight-for-height 

z-score, I use OLS regression models. For the binary outcome of wasting, I use logistic regression 

models. In these specifications, the nutritional status of a child is modelled as a function of 

exposure to a flooding event in the 12 months prior to the DHS interview while accounting for a 

 

boundaries; Burkina Faso 2003 to 2021; Côte d'Ivoire 2012 to 2021; Ghana 2003, 2008, and 2014 to 2022; Senegal 
2005, 2010, 2012, 2014, 2015, 2016, 2018, and 2019 to 2023; and Sierra Leone 2008 and 2013 to 2019. 

10 The 2012 regional sample for Mali consists of six regions rather than nine because the DHS did not sample 
Tombouctou, Gao, and Kidal.  
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set of child-, maternal-, and household-level controls. The models also include province-fixed 

effects to control for time-invariant regional characteristics and time-fixed effects to account for 

period-specific shocks. This helps reduce bias from unobserved factors that vary across provinces 

or time. 

The child-level regression model takes the following form: 

𝑶𝑶𝑶𝑶𝑶𝑶 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 ∶  𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊 =  𝜷𝜷𝟎𝟎 +  𝜷𝜷𝟏𝟏𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊 + 𝑿𝑿𝒊𝒊𝒊𝒊𝒊𝒊𝛃𝛃 + 𝜹𝜹𝒑𝒑 + 𝛌𝛌𝒕𝒕 + 𝝐𝝐𝒊𝒊𝒊𝒊𝒊𝒊 

& 

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎: 𝑷𝑷𝑷𝑷(𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊) =  
𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷𝟎𝟎 +  𝜷𝜷𝟏𝟏𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊 + 𝑿𝑿𝒊𝒊𝒊𝒊𝒊𝒊𝛃𝛃 + 𝜹𝜹𝒑𝒑 + 𝛌𝛌𝒕𝒕)

𝟏𝟏 +  𝒆𝒆𝒆𝒆𝒆𝒆(𝜷𝜷𝟎𝟎 +  𝜷𝜷𝟏𝟏𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊 + 𝑿𝑿𝒊𝒊𝒊𝒊𝒊𝒊𝛃𝛃 + 𝜹𝜹𝒑𝒑 + 𝛌𝛌𝒕𝒕)
 

where 𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊 represents the nutritional outcome of interest (WHZ or wasting) for child 𝑖𝑖 in 

province 𝒑𝒑 at survey time 𝒕𝒕. The variable 𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊 is a binary indicator for flood exposure in the 12 

months before the survey interview. The term 𝑿𝑿𝒊𝒊𝒊𝒊𝒊𝒊𝛃𝛃  is a vector of control variables capturing 

child, maternal, and household characteristics. The term 𝛿𝛿𝑝𝑝 denotes a vector of province fixed 

effects, implemented as a set of province dummies for each of the 118 unique provinces in the 

sample. The term 𝛌𝛌𝒕𝒕, represents a vector of time-fixed effects that include a set of survey-year 

dummies grouped into five intervals (2000–2004, 2005–2009, 2010–2014, 2015–2019, 2020 

onward).  Finally, 𝝐𝝐𝒊𝒊𝒊𝒊𝒊𝒊 represents the regression error term for the OLS model.  

 Table 1 presents weighted descriptive statistics for the child-level analyses.  Approximately 

11% of children in the analytical sample were wasted. The average weight-for-height-z-score in 

the sample was -0.41. Within this sample, one-third (33%) of children resided in areas that 

experienced a flooding event in the 12 months to the DHS interview. 
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Table 1:  Child-level Variables 

Variables   Mean SD Min Max 
Outcomes           

Wasted (WHZ <-2)  0.11 0.31 0.00 1.00 
Weight for height z-score  -0.41 1.39 -5.00 5.00 

Childhood Flood Exposure            
Flood Exposure in the last 12 months  0.33 0.47 0.00 1.00 

Control Variables           
Childhood Characteristics           

Age (0-59 months)  28.13 17.21 0.00 59.00 
Sex = Female  0.49 0.50 0.00 1.00 
Child's birth order  3.75 2.43 1.00 18.00 
Coresident with under five children  2.55 1.64 0.00 27.00 

Maternal Characteristics           
Mother's age (years)  29.45 6.92 15.00 49.00 

Mother's education       
No education   0.63 - - - 
Primary  0.18 - - - 
Secondary +  0.19 - - - 

Mother's employment       
Unemployed  0.35 - - - 
Non-Agriculture Sector  0.42 - - - 
Agriculture Sector  0.23 - - - 

Household Characteristics           
Household wealth      

Low   0.43 - - - 
Middle    0.20 - - - 
High    0.36 - - - 

Place of residence      
Rural  0.67 0.47 0.00 1.00 

Sample size:  270,850    

Note: Weighted descriptive statistics.      
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Results: 
Overall estimates for child analyses  

I begin my analysis by examining the association between recent flood exposure and children's 

weight-for-height. Table 3, Model 1 presents the estimates from my OLS regression, which reveals 

a negative and statistically significant association between flood exposure and weight-for-height 

(WHZ). Specifically, I find that children exposed to a flooding event within the 12 months 

preceding the DHS interview had WHZ scores that were 0.11 standard deviations lower than those 

of children who had not experienced a recent flooding event. This suggests that flood exposure 

contributes to acute nutritional stress.  

 I next estimated a logistic regression model that assessed whether flood exposure is associated 

with an increased likelihood of wasting. The estimates of this analysis are presented in Table 3, 

Model 2.  As shown in Table 3, Model 2, the results indicate a statistically significant increase in 

the likelihood of wasting among children exposed to floods. Specifically, children exposed to 

flooding were 20% more likely to be wasted compared to their non-exposed counterparts. This 

finding highlights the short-term nutritional consequences of environmental shocks. 

Overall, the estimates presented in Table 3 provide evidence that flood exposure has adverse 

effects on children’s nutrition, particularly on acute malnutrition. The declines in WHZ and 

increases in wasting highlight the heightened vulnerability of young children to environmental 

shocks. Moreover, these findings suggest that recent floods may play an important role in shaping 

children’s nutritional vulnerability by increasing the odds of wasting by 20%. This highlights how 

floods may cause heightened risks of illness, developmental delays, and mortality in affected 

populations.  
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Table 3: Impact of recent flood exposure on child nutritional growth 
  Model 1  Model 2  

Variables 
Coef 
WHZ  

OR 
Wasting  

      
Recent flood exposure -0.11 *** 1.20 *** 
 (0.01)  (0.03)  
Age in months 0.00 *** 0.98 *** 
 (0.00)  (0.00)  
     
Childhood controls Yes  Yes  
Maternal Controls Yes  Yes  
Household Controls Yes  Yes  
Year fixed effects Yes  Yes  
Provincial fixed effects Yes  Yes  
     
Joint test, recent flood exposure ***  ***  
     
Observations 270,834   270,834   
Robust standard errors are in parentheses. Weighted analyses. 
*** p<0.001, ** p<0.01, * p<0.05, † p<0.1 

    

Variation in the individual effects of recent floods 

To examine whether the impact of recent flood exposure varies across sociodemographic 

groups with differing levels of vulnerability, I estimate a series of interaction models. Results from 

these analyses are presented in Table 5 for weight-for-height and in Table 6 for wasting.  

Models 1 and 2 in both Table 5, for weight-for-height, and Table 6, for wasting, explore 

whether the effects of flood exposure differ by child children and age. Unsurprisingly, I find no 

evidence of gendered differences in nutritional vulnerability: the interaction between flood 

exposure and female sex is small and statistically insignificant for both WHZ and wasting. While 

no gendered differences were found, child age emerged as a significant moderator in the interaction 

between child age and flood exposure, which suggests age-related differences in vulnerability. In 

the WHZ model (Table 5, Model 2), the positive coefficient on the interaction term (β = 0.009, p 
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< 0.001) indicates that the negative effect of flooding on weight-for-height becomes progressively 

smaller as children age. Similarly, in the wasting model (Table 6, Model 2), the interaction term 

(OR = 0.991, p < 0.001) suggests that the probability of wasting decreases slightly with each 

additional month of age. These findings imply that older children are somewhat more resilient to 

the immediate nutritional impacts of flooding, possibly due to greater dietary independence, 

stronger immune function, or reduced reliance on caregivers during disruptions.  

Model 3 assesses whether maternal education buffers the adverse effects of flooding. 

Specifically, in this model, I test for differences in the relationship between recent flood exposure 

based on whether children’s mothers had primary education or secondary and above education. 

Compared to children of mothers with no formal education, those whose mothers have attained 

primary education experience significantly smaller declines in WHZ (β = 0.103, p < 0.001) and 

were also less likely to be wasted (OR = 0.859, p < 0.001). The protective effect observed in 

mothers with primary education is shown to extend to those with secondary or higher education, 

where modest improvements in WHZ (β = 0.027, p < 0.1) and reduced odds of wasting (OR = 

0.869, p < 0.001) were observed. However, the effects of secondary education are also shown to 

be smaller than those of primary education. Overall, these findings suggest that maternal education 

acts as a protective factor for children’s nutritional health, potentially enabling households to better 

safeguard child nutrition in the face of environmental shocks.  

In Model 4, I investigate whether maternal employment moderates the flood-related impacts 

on children’s nutrition. The results show a modest protective effect for children of unemployed 

motherscocmpared to employed mothers in the non-agricultural sector, suggesting possible 

compensatory caregiving behaviours when mothers are home. Specifically, children of 

unemployed mothers exhibit a slightly less negative WHZ trajectory following flooding (β = 0.040, 
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p < 0.01).  However, I find no evidence of a significant association between recent flood exposure 

and mothers employed in the agricultural sector, suggesting that despite direct vulnerability to crop 

loss or income disruption, this group may not experience additional disadvantage in children's 

short-term nutrition.  

Model 5 examines whether wealth moderates the effects of flood exposure by comparing 

children from middle- and high-wealth households to those from the poorest category. While 

wealthier households are often assumed to have a greater capacity to absorb shocks, I find no 

statistically significant differences in the effect of recent flood exposure on WHZ and wasting 

across these wealth categories, indicating that household economic standing alone may not 

mitigate flood-related nutritional vulnerabilities. 

Finally, in Tables 5 and 6, Model 6 examines the moderating effect of rural residence. The 

interaction between flood exposure and rural location is negative and statistically significant for 

WHZ (β = –0.025, p < 0.05), but no significant association is observed in the wasting model. This 

suggests that children in rural areas may suffer more weight loss following flooding events. The 

findings highlights the persistent structural vulnerabilities of rural households.
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Table 5. Interaction Effects of Recent Flood Exposure on Child Weight-for-height Z-Scores (WHZ) 
  Model   Model   Model   Model   Model   Model   
Variables (1)   (2)   (3)   (4)   (5)   (6)   
                         
Recent flood exposure -0.119 *** -0.388 *** -0.142 *** -0.136 *** -0.123 *** -0.102 *** 

 (0.01)  (0.02)  (0.01)  (0.01)  (0.01)  (0.01)  
Interaction Terms             
Female x Recent flood exposure 0.0003            
 (0.01)            
Age in months x Recent flood exposure   0.009 ***         
   (0.00)          
Primary x Recent flood exposure     0.103 ***       
     (0.016)        
Secondary+ x Recent flood exposure     0.027 *       
     (0.02)        
Unemployed x Recent flood exposure       0.040 **     
       (0.014)      
Agricultural sector x Recent flood exposure       0.008      
       (0.02)      
Middle wealth x Recent flood exposure         0.002    
         (0.016)    
High wealth x Recent flood exposure         0.009    
         (0.01)    
Rural x Recent flood exposure           -0.025 * 

           (0.01)  
             
Childhood controls Yes  Yes  Yes  Yes  Yes  Yes  
Maternal Controls Yes  Yes  Yes  Yes  Yes  Yes  
Household Controls Yes  Yes  Yes  Yes  Yes  Yes  
Year Fixed effects Yes  Yes  Yes  Yes  Yes  Yes  
Province-Level Fixed effects Yes  Yes  Yes  Yes  Yes  Yes  
             
R-Squared 0.0354  0.0377  0.0355  0.0354  0.0354  0.0354  
Observations 270,834   270,834   270,834   270,834   270,834   270,834   
Robust standard errors are in parentheses. Weighted analyses. 
*** p<0.001, ** p<0.01, * p<0.05, t p<0.1             
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Table 6. Interaction Effects of Recent Flood Exposure on Childhood Wasting 
  Model   Model   Model   Model   Model   Model   
Variables (1)   (2)   (3)   (4)   (5)   (6)   
                         
Recent flood exposure 1.206 *** 1.492 *** 1.261 *** 1.213 *** 1.227 *** 1.179 *** 

 (0.03)  (0.04)  (0.03)  (0.03)  (0.03)  (0.04)  
Interaction Terms             

Female x Recent flood exposure 1.001            
 (0.03)            
Age in months x Recent flood exposure   0.991 ***         
   (0.00)          
Primary x Recent flood exposure     0.859 ***       

     (0.033)         
Secondary+ x Recent flood exposure     0.869 ***       

     (0.04)         
Unemployed x Recent flood exposure       0.949      
       0.030      
Agricultural sector x Recent flood exposure       1.059      

       (0.04)      
Middle wealth x Recent flood exposure         0.981    
         (0.035)    
High wealth x Recent flood exposure         0.957    
         (0.03)    
Rural x Recent flood exposure           1.031  
           (0.03)  
             
Childhood Controls  Yes  Yes  Yes  Yes  Yes  Yes  
Maternal Controls  Yes  Yes  Yes  Yes  Yes  Yes  
Household Controls  Yes  Yes  Yes  Yes  Yes  Yes  
Year Fixed effects  Yes  Yes  Yes  Yes  Yes  Yes  
Provincial Fixed effects Yes  Yes  Yes  Yes  Yes  Yes  
             
R-Squared             
Observations 270,834   270,834   270,834   270,834   270,834   270,834  
Robust standard errors are in parentheses. Weighted analyses.  
*** p<0.001, ** p<0.01, * p<0.05, t p<0.1             
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Sensitivity Analyses: 

To assess whether the main findings are robust to alternative modelling choices, I conduct a 

series of sensitivity analyses. These tests examine whether the relationship between flood exposure 

and child nutritional outcomes holds across different model specifications. I summarize the results 

of these sensitivity analyses here and include the full results in the Supplemental information. 

First, to explore whether the timing of flood exposure affects child nutritional outcomes, I 

constructed a categorical variable disaggregating flood exposure into five intervals: (0) no 

exposure, (1) exposure within 1 month, (2) exposure within 2–3 months, (3) exposure within 4–6 

months, (4) exposure within 7–9 months, and (5) exposure 10+ months before the DHS 

interview.11 These thresholds allow for a finer-grained inspection of the immediate and delayed 

effects between flooding on children’s nutritional growth.12 The results of this threshold analysis 

(Table S1) are mainly consistent with the primary binary analysis of flood exposure, where flood 

exposure was significantly associated with both declines in WHZ (Model S1) and increased risk 

of wasting (Model S2). However, this disaggregated specification revealed both immediate and 

delayed effects. Specifically, children exposed to floods 1 month before the DHS data collection 

show significantly elevated odds of wasting and a decline in WHZ, indicating that the nutritional 

 

11 To construct the categorical threshold variable for flood exposure, several alternative groupings were tested to 
ensure that the selected categories captured substantively distinct exposure periods. A series of post-estimation tests 
confirmed that most thresholds were statistically different from one another. Overall, the results support the use of 
five mutually exclusive exposure periods: 1 month, 2–3 months, 4–6 months, 7–9 months, and 10 months or more 
before the DHS interviews. 
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impacts of flooding can emerge quickly. Similar decreases in WHZ and increases in the likelihood 

of wasting were also observed for children exposed 2 to 3 months before the DHS data collection. 

The results of this analysis also showed that children exposed 7–9 months earlier also experienced 

a significant rise in wasting and one of the largest declines in WHZ, suggesting that some 

consequences may be delayed and intensify over time, possibly due to cumulative resource 

depletion, prolonged food insecurity, or persistent disease exposure following the flood. An 

interesting pattern also emerged in the wasting threshold analysis for the 4–6 month exposure 

window. The threshold analysis reveals that for the 4-6 month exposure window, the odds of 

wasting are significantly lower. This divergence may reflect short-term coping strategies or 

targeted relief interventions, such as food distribution, mobile health units, or humanitarian aid, 

that are often mobilized a few months after a major disaster. Alternatively, this pattern may be 

associated with seasonal variation in households’ food availability or individual household 

resilience, where the flood aligns with a harvest or income cycle that temporarily buffers 

nutritional stress.  

 I then investigated whether the findings were sensitive to how the exposure window in the 

primary analysis was defined. Specifically, to examine whether the relationship between flood 

exposure and child nutritional outcomes is sensitive to the specific definition of the exposure 

window utilized in the primary analyses, I re-estimate my models using shorter exposure windows 

of 8 and 10 months rather than the 12-month window. While a 12-month exposure window is 

commonly used in studies of environmental shocks and disasters, alternative specifications of 8 

and 10 months are considered to account for the possibility that more recent exposure to flooding 

events may have a greater impact on children’s nutritional development, particularly since WHZ 

and wasting capture acute and short-term deprivation. In each specification, children were coded 
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as exposed if they lived in a flood-affected province during the defined 8- or 10-month period 

before the DHS interviews. Children who had no flood exposure within that window were coded 

as unexposed. To avoid exposure misclassification, children who experienced a flood outside the 

defined time window (e.g., 11–12 months before the survey in the 10-month model) were excluded 

from the analysis. This ensured that only children whose flood exposure timing fell within the 

defined risk window were included. The results of these analyses are presented in Table S2. While 

the point estimates slightly varied with changes in the exposure window, the substantive findings 

of the primary analyses remained largely unchanged, although slightly stronger. Flood exposure 

continued to be significantly associated with decreased WHZ (Model S3) and increased levels of 

wasting (Model S4).  Estimates for provincial analysis were also consistent with the original 

results.  

 To account for potential bias arising from household mobility, I conduct an additional 

robustness check, excluding all households that reported residing in their current location for less 

than one year, which aligns with the length of the studied exposure window. This exclusion criteria 

for households was chosen to match the 12-month exposure window used in the primary analysis, 

ensuring that children classified as exposed (or unexposed) to flooding had lived in a specific area 

during the entire period when flood exposure was assessed. Without this restriction, recent in-

migration or out-migration could result in the misclassification of childhood exposure. This 

restriction was applied using information on the length of time a household has lived in its current 

place of residence from the DHS survey. While existing research suggests that migration in 

response to environmental shocks is relatively uncommon (Bohra-Mishra et al., 2014), this test 

aimed to ensure that recent migrating households were not disproportionately influencing the 

results. The results of this analysis (Table S3), excluding recent migrant households, do not 
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substantively change the main findings of the primary analysis. Flood exposure remained 

significantly and negatively associated with WHZ (Model S7) and positively associated with 

wasting (Model S8). The findings thereby reinforced the robustness of the primary analyses. 

Finally, to investigate whether the functional form of child age influences the estimated 

relationship between flood exposure and nutritional outcomes, I re-estimate the primary models 

by including a quadratic term for child age. This specification accounts for potential nonlinearity 

in the relationship between age and nutritional status, which may be particularly relevant during 

early childhood due to the rapid developmental changes that occur during this period. As shown 

in Table S4, the squared age term is not statistically significant in the WHZ model (Model S9), 

which suggest that the linear specification in the primary analyses is sufficient. In this model, I 

also find that adding the squared age term does not alter the estimated association between flood 

exposure and WHZ. The estimated effect remains a 0.11 standard deviation decline in WHZ for 

flood-exposed children, identical to the baseline model. These results suggest that for the WHZ 

model, the linear specification of child age sufficiently captures its relationship with WHZ.  For 

wasting (Model S10), the age-squared term is statistically significant but substantively negligible. 

The estimated odds ratio for the quadratic age term is 1.00. However, the inclusion of the quadratic 

term yields a slightly stronger estimated association between flood exposure and child wasting, 

where flood exposure increases from 1.20 to 1.22 in the nonlinear specification. Although the 

inclusion of the quadratic does yield a modest change in the magnitude of the coefficient for flood 

exposure, the overall results from this sensitivity analysis align with the main findings of the 

primary analysis. That is, recent flood exposure is associated with poorer child nutritional 

outcomes.  
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Supplemental information  
Table S1: Coefficient estimates from linear regression models predicting weight-
for-height (Model S1) and wasting (Model S2) by month threshold since flood 
exposure 
     
Variables S1 WHZ   S2 Wasting   
     
1 month since exposure -0.16 *** 1.36 *** 
 (0.02)  (0.06)  
2 to 3 months since exposure -0.08 *** 1.10 * 
 (0.02)  (0.05)  
4 to 6 months since exposure -0.03  0.87 ** 
 (0.02)  (0.03)  
7 to 9 months since exposure -0.22 *** 1.34 *** 
 (0.02)  (0.04)  
10+ months since exposure -0.05 ** 1.19 *** 
 (0.02)  (0.04)  
     
Childhood Controls Yes  Yes  
Maternal Controls Yes  Yes  
Household Controls Yes  Yes  
Year Fixed Effects Yes  Yes  
Provincial Fixed Effects Yes  Yes            
Observations 270,834   270,834   
Robust standard errors in parentheses. Weighted analyses. 
*** p<0.001, ** p<0.01, * p<0.05, † p<0.1 

 
Table S2: Coefficient estimates from linear regression models predicting weight-for-height (Models S5 
and S7) and wasting (Models S6 and S8), using alternative flood exposure windows (8 and 10 months)          

Variables 
S5 

WHZ   S6 
Wasting   S7 

WHZ   S8 
Wasting   

            
Flood exposure, 8 months 
before the survey -0.13 *** 1.21 ***     
 (0.01)  (0.03)               
Flood exposure, 10 months 
before the survey     -0.12 *** 1.20 *** 
     (0.01)  (0.03)           
Childhood Controls Yes  Yes  Yes  Yes  
Maternal Controls Yes  Yes  Yes  Yes  
Household Controls Yes  Yes  Yes  Yes  
Year Fixed Effects Yes  Yes  Yes  Yes  
Provincial Fixed Effects Yes  Yes  Yes  Yes  
         
Observations 250,865   250,865   260,456   260,456   
Robust standard errors are in parentheses. Weighted Results 
*** p<0.001, ** p<0.01, * p<0.05, † p<0.1 
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Table S3: Coefficient estimates from linear regression models predicting weight-
for-height (Model S13) and wasting (Model S14), restricted to non-migrant 
households 

Variables S13 WHZ   S14 
Wasting   

        
Flood exposure -0.14 *** 1.32 *** 
 (0.02)  (0.04)  
     
Childhood Controls Yes  Yes  
Maternal Controls Yes  Yes  
Household Controls Yes  Yes  
Year Fixed Effects Yes  Yes  
Provincial Fixed Effects Yes  Yes  
     
Observations 148,548   148,548   
Robust standard errors are in parentheses. Weighted Results 
*** p<0.001, ** p<0.01, * p<0.05, † p<0.1 

 
Table S4: Coefficient estimates from nonlinear regression models predicting weight-
for-height (Model S18) and wasting (Model S19), including quadratic specification for 
child age 
         
Variables S18 WHZ  S19 Wasting   
         
Flood exposure -0.11 *** 1.22 *** 

 (0.01)  (0.03)  
Age in months 0.00 *** 0.97 *** 

 (0.00)  (0.00)  
Age in months squared 0.00  1.00 *** 

 (0.00)  (0.00)  
     
Childhood Controls Yes  Yes  
Maternal Controls Yes  Yes  
Household Controls Yes  Yes  
Year Fixed Effects Yes  Yes  
Provincial Fixed Effects Yes  Yes       
Observations 270,834   270,834   
Robust standard errors are in parentheses. Weighted Results 
*** p<0.001, ** p<0.01, * p<0.05, † p<0.1 
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