
1 
 

Environmental Determinants of Anaemia and Spatial Association with Mosquito-Borne 

Disease Vulnerability: A Case of Eastern and North-Eastern India 

¹Lobsang Tshering Bhutia*, ²Aparajita Chattopadhyay 

 

1. Lobsang Tshering Bhutia 

Research Scholar, Department of Population and Development, 

International Institute for Population Sciences, 

Deonar, Mumbai, Maharashtra 400 088, India 

E-mail: lbhutia8@gmail.com 

ORCID: 0000-0001-8863-2763 

 

2. Aparajita Chattopadhyay 

Professor, Department of Population and Development, 

International Institute for Population Sciences, 

Deonar, Mumbai, Maharashtra 400 088, India 

Email:aparajita@iipsindia.ac.in  

 

 

 

Abstract 

Background: Understanding anaemia prevalence in the context of environmental exposure calls for in-

depth research. This study delves into the clustering and determinants of anaemia, focusing on 

environmental factors and their association with mosquito-borne disease vulnerability in Eastern and 

North-Eastern India. 

Methods: Using the National Family Health Survey (NFHS-5, 2019–21), Bivariate and Binary logistic 

regression analyses were used to determine the effect of environmental, health and demographic factors 

on anaemia separately for females and males, followed by spatial clustering of anaemia and its 

association with mosquito-borne disease vulnerability. 

Results: The study reveals that anaemia was more likely to occur in females and males living in areas 

characterised by lower altitudes, higher mean annual temperatures, higher annual rainfall, more frequent 

drought episodes, and denser vegetation. Factors such as more number of children, being underweight, 

age 15–24, lower levels of education, being Hindu, tribal status, and belonging to the poorest wealth 

categories were also risk factors for anaemia. Furthermore, riverine areas of humid subtropical regions 

had a higher clustering of anaemia hotspots among females and males and were positively associated 

with areas of high mosquito-borne disease vulnerability in the study region. 

Conclusion: The study underscores the significant role of environmental determinants in shaping 

anaemia risk in Eastern and North-Eastern India, calling for integrated, environment-informed public 

health interventions. 

Keywords: Anaemia; Environment; Mosquito-Borne Disease; Analytical Hierarchy Process; Eastern 

and North-Eastern India 
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Background: 

Environmental factors pose a significant threat to nutritional deficiencies. Anaemia as a nutritional 

indicator is critical in achieving SDG-2 (Zero Hunger) [1]. Women and children face unforeseen 

negative consequences of anaemia, such as cognitive development, low work productivity, and maternal 

and perinatal mortality [2]. The prevalence of anaemia is more severe in developing nations with poor 

socio-economic conditions, such as countries in South Asia and Western and Central Sub-Saharan 

Africa [3]. Poor health owing to anaemia has a marked effect on the economy. Research estimates the 

economic cost of anaemia among children aged 6 to 59 months is 24,001 million USD in productivity 

losses and 1.3% of GDP in India [4, 5]. India ranks fifth in anaemia severity among all the countries, 

as per the WHO Global Anaemia Estimates 2021 [6]. The Government of India has made commendable 

efforts in anaemia reduction policies like the National Nutritional Prophylaxis Programme of 1970, 

making India the first developing country to initiate a government-aided programme towards anaemia 

reduction targeting young children and women of the reproductive age group, to the recent Anaemia 

Mukt Bharat of 2018 [7–9]. However, at the national level, as per the latest round of NFHS, the anaemia 

prevalence for women of the reproductive age group increased from 53.1% NFHS-4 (2015-16) to 57% 

NFHS-5 (2019-20) [10]. This draws attention to the policy approach in such a diverse country as India, 

which requires a diverse, aspiring approach, considering the disentanglement of the complex aetiology 

of anaemia. Most research on anaemia has primarily considered socio-economic and health 

determinants, like age, educational attainment, residence, wealth index, pregnancy status, etc., which 

can primarily affect anaemia [11–16]. Alongside socio-economic and health factors, primary 

environmental factors can also significantly affect anaemia, particularly in Eastern and North-Eastern 

regions, experiencing humid sub-tropical climates, owing to infection spread by vectors. 

The fact that the physical environment is an essential determinant of health has gained global scientific 

recognition. According to study estimates of the global disease burden, environmental risk factors were 

responsible for 22% of global disability-adjusted life years (DALYs) and 23% of global deaths in 2012 

[17]. Developing countries endure the burden of diseases such as infection, vector-borne disease, 

diarrhoea, malnutrition, respiratory diseases and a growing share of non-communicable diseases 

attributed to environmental risk factors, while the relevance in developed countries is relatively less 

[18]. Environmental factors here can be categorised into general external/macro-level and specific 

external/micro-level factors [19]. There are ample studies on the association between micro-level 

environmental factors and anaemia, including factors such as air pollution, water quality, heavy metal 

contamination, etc. [20–24]. However, the macro-level factors, which are more dormant overall, are 

still an under-researched arena. Although studies reveal macro-level environmental factors such as 

climate, vegetation and meteorological hazards such as drought and flood are directly and indirectly 

related to agricultural failure, alteration of micronutrients in crops and food security issues [25–27], 

alteration in drinking water quality, and increased occurrence of vector-borne disease [28] and parasitic 

infections [29], exacerbating the severity of anaemia. However, there is a dire need to dissect the depth 

of the complex relationship between macro-level environmental factors and anaemia. 

Regionally, Eastern and North-Eastern states such as Bihar, Tripura, Jharkhand, Assam, and West 

Bengal were deficient in Key Performance Index scores of the programme called Anaemia Mukt Bharat, 

placing them near the bottom. In contrast, North-Eastern states like Manipur, Mizoram, Nagaland, 

Sikkim, Meghalaya and Arunachal Pradesh performed well [30]. Likewise, the explanation for the 

disparity in anaemia prevalence among Eastern and North-Eastern states of India can have additive 

aspects alongside socio-demographic and health-related factors. The link between infection and 

anaemia is well established. Infection can result in reduced intestinal absorption, nutrient loss in the gut 

due to increased secretion, internal diversion for infection-related metabolic responses, and elevated 
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basal metabolic rate, accelerating nutrient loss [31]. According to the National Center for Vector Borne 

Disease Control (NCVBDC), the East and North-Eastern States are highly prone to vector-borne 

diseases such as malaria, dengue, chikungunya, etc., which can contribute to anaemia [32]. 

Declassifying these diseases, India has been witnessing rapid progress in decreasing malaria cases, but 

Eastern India still witnesses a high burden of malaria. The WHO High Burden High Impact (HBHI) 

initiative (2019) has been focused on three eastern Indian states: West Bengal, Odisha, and Jharkhand, 

alongside Madhya Pradesh in Central India, for action against malaria [33]. An estimated 33 million 

clinically evident dengue cases occur annually in India, and the spread has progressed rapidly from 

urban to rural [34]. As per the reported estimates of dengue cases by NVBDCP 2023, West Bengal and 

Bihar rank 2nd and 3rd  with 10.61% and 6.99% share of total dengue cases;  Odisha, Assam and 

Jharkhand were the other states having a high share of dengue burden respectively [35]. 

Changing environment and climatic conditions can further impact the expansion and relocation of 

mosquito vectors in spreading diseases through multiple pathways [36]. The challenge lies in 

determining mosquito-borne disease in changing environmental and climatic conditions, as 

environmental conditions are not static [37].  The currently available research on anaemia primarily 

focuses on children and females of reproductive age group, while research on male counterparts is 

limited. It is to be noted that a lower prevalence of anaemia among men compared to women is linked 

to inequality in nutrition, blood loss due to menstrual bleeding, multiple pregnancies, and so on [38]. 

However, a similar prevalence pattern is observed in India, i.e., states with high female anaemia 

prevalence also correlate with high male anaemia prevalence, although of lesser intensity among males 

is observed with general exception in some states as shown in (Fig. 1); this made us revisit the role of 

macro-level environmental factors in explaining anaemia among males and females in Eastern and 

North-Eastern India. 

 

Fig. 1: State/UT wise prevalence of anaemia among (a) Females, and (b) Males in India (NFHS-5) 

2019-21 
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Considering the abovementioned problems and findings from past available literature, the study aims 

to determine the clustering of anaemia hotspots among males and females in Eastern and North-Eastern 

India. It explores differentials in determinants of anaemia among males and females aged 15-49 

attributed to Environmental, Health, and Demographic factors. Further, the study explores the spatial 

correlation between mosquito-borne disease vulnerability and anaemia. 

 

Materials and Methods: 

Description of the Study Area 

The study area covers Eastern and North-Eastern India as shown in (Fig. 2), comprising states such as 

Bihar, Jharkhand, Odisha, and West Bengal in the east, characterised by fertile plains, river basins, and 

a mix of plateau and coastal plains, and the North-Eastern region of India consists of eight states 

including Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura, Arunachal Pradesh, and Sikkim 

characterised by hilly and mountainous terrain, dense forests[39]. 

The climate across these regions varies significantly. Eastern India typically experiences a humid 

subtropical climate with hot summers and distinct rainy seasons, while the North-East receives some of 

the highest rainfall levels in the country and has a humid subtropical to temperate climate, depending 

on altitude [40]. As per to Census of India 2011 the, Eastern and North-Eastern India also reflects vast 

difference in population, with Eastern India having some of the highest population states in India, such 

as Bihar and West Bengal, ranking third and fourth in total population with 10.8% and 7.54% of India’s 

population whereas the North-East represents only 3.7% of total population of India [41]. However, 

despite these differences, Eastern and North-Eastern India still house 35.9% of the Scheduled Tribe 

population [41]. 

Data Source and Study Population 

The Demographic and Health Studies (DHS) or National Family and Health Survey (NFHS) is a 

nationally representative survey conducted by the Ministry of Health and Family Welfare (Government 

of India), with the International Institute for Population Sciences (IIPS), Mumbai, as the Nodal Agency. 

The samples are selected using a stratified multi-stage cluster sampling method to ensure nationally 

representative estimates. There are currently five rounds of survey covering comprehensive data on 

various indicators such as household population and housing characteristics, fertility, family planning, 

maternal and child health, selected morbidity issues, HIV/AIDS, domestic violence etc., [10]. Likewise, 

the study used NFHS-5 (2019-21) data, inclusive of the Eastern and North-Eastern States of Bihar, West 

Bengal, Jharkhand, Odisha, Assam, Tripura, Meghalaya, Arunachal Pradesh, Manipur, Mizoram, 

Nagaland, and Sikkim (Eastern and North-Eastern states of India). 

The study population included all women and men of the reproductive age group 15-49, who were 

tested for haemoglobin levels, excluding the missing values. The sample included 214,231 females and 

25,953 males. DHS geographical covariates provide data on cluster levels wherein the rural clusters are 

displaced to 5 km, and urban clusters are displaced to 2 km to maintain confidentiality. However, 

assuming that within the displaced distance, the geographical factors such as cluster altitude, annual 

rainfall, mean annual temperature, drought episodes, and enhanced vegetation index are unlikely to vary 

greatly, the geographical covariates were merged into the individual files for further analysis. 
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Fig. 2: District level map of Eastern and North-Eastern India depicting study area coverage and 

administrative boundaries 

 

The data used to generate the mosquito-borne disease vulnerability map included several geospatial 

data, such as Digital Elevation Model (DEM) [42], Normalized Differential Vegetation Index (NDVI) 

[43], Land Use Land Cover (LULC) [44], Annual Rainfall [45], Mean Annual Temperature [45], 
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Population Density [46], Proportion Poor [10], and Wetness Index. These geospatial data are stratified 

to DHS years and are essential predictors of mosquito-borne disease, the data source for which has been 

highlighted in (Table 1). 

Table 1: Geospatial data input and sources for assessment of Mosquito-Borne Disease vulnerability in Eastern 

and North-Eastern India 

 
Geospatial Variables Indicators Data source 

Digital Elevation Model (DEM) Altitude (meters) United States Geological Survey 

Topographic Wetness Index 

(TWI) 

Soil Moisture Saturation (%) Derived from DEM 

Normalized Differential 

Vegetation Index (NDVI)  

Greenness Vegetative cover Moderate Resolution Imaging Spectroradiometer 
(MODIS) 

Land Use Land Cover (LULC) Land Use Characteristics Copernicus Global Land Service 

Annual Rainfall Precipitation in (mm) Indian Meteorological Department (IMD) 

Annual Mean Temperature Temperature in (°C) Indian Meteorological Department (IMD) 

Population Density Population per 1 km World Pop  

Proportion Poor Percentage of Population below poor wealth quintile NFHS- 5 

 

Outcome Variable 

The dependent or outcome variable anaemia status was recoded as a dummy variable (0 non-anaemic 

and 1 anaemic) where anaemic females included non-pregnant women whose haemoglobin count was 

less than 12.0 grams per decilitre (g/dl) and pregnant women whose count was less than 11.0 (g/dl) 

against non-anaemic having higher haemoglobin cut off values. Additionally, males whose 

haemoglobin count was less than 13.0 grams per decilitre (g/dl) were considered anaemic against non-

anaemic with a haemoglobin count higher than 13.0 grams per decilitre (g/dl) [47]. 

Predictor Variable 

The predictor or independent variables included environmental, demographic, and health variables such 

as altitude, mean annual temperature, annual rainfall, drought episodes, enhanced vegetation index, 

children ever born, body-mass index, type of diet consumption, source of water, toilet facility, age, 

educational level, religion, caste, type of residence and wealth index. 

The environmental determinants in health studies are limited in identifying standard cutoffs for 

environmental parameters. Given the limitations, the categorisation and the demarcation of the 

threshold for ecological parameters were carefully marked based on indicators of agroecological 

zonation, as anaemia is an important indicator of nutritional levels. Altitudinal differences are an 

essential predictor of landforms and resultant vegetation typologies. As such, the categories of altitude 

were categorised as 0 to 100 meters, 100 to 500 meters, 500 to 1000 meters and above 1000 meters as 

a single category [48]. The mean annual temperature was distinctly selected to divide the humid 

subtropical part of India from the mountain climatic category, with 20°C as the standard cutoff  based 

on the Koppen climatic classification [49, 50]. Furthermore, studies also highlight that all-cause 

mortality increases when the temperature increases greater than the threshold of 20°C, marking it as an 

important threshold limit in health studies [51]. Similarly, according to the Indian Meteorological 

Department (IMD) reports 2021, the annual rainfall in Eastern and North Eastern India was recorded to 

be 1236.4mm with significant variation among the states with Himalayan high altitudes ranging from 
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2,000 to 3,000 mm due to the orographic nature of monsoon which impacts the agricultural productivity, 

and vegetation as such annual rainfall was categorised into less than 1500mm, 1500 to 2000mm and 

more than 2000mm as the upper limit category [52–54]. Drought Episodes is a spatially classified index 

of long-term drought frequency, it ranges from 0 to 10 levels, with higher values indicating more 

frequent and severe historical drought experience and has been classified into less than 2, 2-5, and 

greater than 5. Furthermore, the Enhanced Vegetation Index (EVI) as an indicator of vegetation health 

ranges between +1 to -1, where positive values represent healthy vegetation and negative values 

represent bare soil. Studies highlight that EVI value 0.2 is the lower bound threshold of healthy 

vegetation below which, as it approaches negative values the vegetative health is considered as sparse 

or bare ground, as such, we categorised EVI into three groups less than 0.20, 0.20-0.30, and more than 

0.30 [55, 56]. 

Statistical Analysis  

To address the complex survey design, including sampling weights, clustering, and stratification, we 

used svyset function, to ensure that statistical analysis appropriately accounts for the survey structure, 

producing accurate and representative results. Univariate analysis was used to describe the distribution 

of the sample by background characteristics, a detailed description of which is given in (Table S1 in 

the Supplementary Material), and chi-square test was used to examine the association between anaemia 

prevalence across distinct covariates in bivariate analysis. 

Binary logistic regression was assembled into two distinct models, model 1 for environmental factors 

and model 2 for environmental factors adjusted with health and demographic factors, for both females 

and males separately. The model explanation follows: 

Logit(Y) = natural log(odds) = ln (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑥1+. . . . +𝛽𝑘𝑥𝑘 

Where 𝑝 is the probability of outcome of interest, 𝛽0 is the intercept and 𝛽1, 𝛽2, … , 𝛽𝑘 regression 

coefficients for predictor 𝑥1, 𝑥2, … , 𝑥𝑘. The outcomes were presented as odds ratio (OR) with 95% 

confidence interval (CI). Furthermore, multicollinearity diagnostics were conducted before the binary 

logistic regression analysis using Variance Inflation Factor (VIF) separately for females and males, as 

highlighted in (Table S2 in the Supplementary Material).  The output of VIF, with a mean VIF value 

of 1.44 for females and 1.41 for males, showed low multicollinearity among the predictor variables. 

Furthermore, none of the variables included in the model exceeded the commonly accepted VIF 

threshold of 10 [57]. Additionally, to check for the model efficiency and improvement after adjusting 

for socio-demographic predictors, Log Likelihood, Pseudo R², Akaike information criterion (AIC), and 

Bayesian information criterion (BIC) have been checked and reported respectively for each model. 

Geospatial Analysis 

Getis-Ord Gi* statistics for detecting prominent hotspots/coldspots of a particular attribute variable is 

the function of attribute values and distance of points/polygons, developed by Getis and Ord to identify 

spatial patterns [58]. Prior to Getis-Ord Gi* statistics, the incremental spatial autocorrelation revealed 

spatial clustering among females was most pronounced at a distance of 35 km, while for males, the 

strongest clustering occurred at 45 km. The output distance thresholds were used as fixed distance bands 

to define spatial neighbourhood structure, followed by spatial autocorrelation of anaemia among both 

females and males in Eastern and North-Eastern India, details of which are highlighted in (Fig. S1 and 

S2 in the Supplementary Material). Lastly, to determine anaemia hot/cold spots at the cluster level 

among females and males in Eastern and North-Eastern India, the Getis-Ord Gi* statistics (Standardized 
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Z-score) were implemented and classified following a standard z-distribution cutoff, which can be 

explained as follows: 

𝑍(𝐺𝑖
∗) =

(𝛴𝑗=1
𝑛 𝑤𝑖𝑗𝑥𝑗 − �̅�𝛴𝑗=1

𝑛 𝑤𝑖𝑗)

√[𝑛 𝛴𝑗=1
𝑛 𝑤𝑖𝑗

2 − (𝛴𝑗=1
𝑛 𝑊𝑖𝑗)

2
]

𝑛 − 1

𝑆

 

Where, 𝐺𝑖
∗ is the statistics function of spatial dependency of incident 𝑖 over all 𝑛 events; 𝑤𝑖𝑗 represents 

weight value distance between geographical points 𝑖 and 𝑗; and 𝑥𝑗 represents the magnitude/values of 

the variables under study (anaemia for males and females) at point 𝑗.  

The Analytic Hierarchy Process (AHP), introduced by Satty is a general theory of measurement and a 

widely used method in multi-criteria decision-making, planning and resource allocation, including 

suitability or vulnerability analysis [59]. The mosquito-borne diseases subjected to Anopheles and 

Aedes mosquitoes, such as malaria, dengue and chikungunya, are subjected to environmental factors 

that require suitable environmental conditions for breeding and spread of infection; as such, to map 

their vulnerability to the lowest scale, the application of geospatial techniques has been reliable and 

emerging in recent times. Studies have focused on mosquito-borne disease vulnerability maps based on 

environmental and socio-economic factors, notably in Kolkata and Northern South America [60, 61]. 

Using a similar conceptuality, the mosquito-borne disease vulnerability map for Eastern and North-

Eastern India was attempted using the Analytic Hierarchy Process. Firstly, key environmental and 

socio-demographic indicators associated with vector ecology were selected through review of previous 

studies on mosquito-borne disease vulnerability in similar ecological setups, as shown in (Fig. S3 in the 

Supplementary Material) [60, 62, 63]. Key domain-specific experts in public health, environmental 

health and climate science were consulted to independently rate the relative importance of variables 

using Saaty’s scale. The weights for each factor were generated through a pairwise comparison matrix 

based on the mean of ratings; relative weights were assigned to the individual variable, details of which 

are highlighted in (Table S3 in the Supplementary Material). The measure of consistency was assessed 

using the Consistency Ratio (CR), which can be expressed as: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

Where, 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥(𝐶𝐼) =
𝜆 𝑚𝑎𝑥 −𝑛

𝑛−𝐼
 , here 𝜆 𝑚𝑎𝑥 is the maximum eigenvalue of the 

comparison matrix, and 𝑛 is the dimension of the comparison matrix, and Relative weight is the random 

consistency index. A consistency ratio of less than or equal to 0.1 or 10% is acceptable; the CR value 

of 2.40% marks the parameter weights in identifying mosquito-borne disease vulnerability in Eastern 

and North-Eastern India. 

The individual variables were re-classified and ranked according to weights as highlighted in the 

Supplementary Material (Table S4); individual re-classified layers were then multiplied by their 

standard weight and then overlayed to others for providing mosquito-borne disease vulnerability in 

Eastern and North-Eastern India. The weighted overlay method can be expressed as 

𝑠 =
𝛴𝑤𝑖𝑠𝑖𝑗

𝛴𝑤𝑖

 

Wherein, 𝑠 is the spatial unit value in the output raster; 𝑤𝑖 is the weight of 𝑖𝑡ℎ variable; and 𝑠𝑖𝑗is the 𝑖𝑡ℎ 

risk value of 𝑗𝑡ℎ variable. 
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Random points were generated, and raster values were extracted from two subset geospatial variables 

of mosquito-borne disease vulnerability and anaemia clusters for both males and females. The spatial 

association was then assessed by Bivariate Local Moran's- I, expressed as follows: 

𝐼𝐵 =
𝛴𝑖(𝛴𝑗𝑤𝑖𝑗(𝑑)𝑥𝑖 × 𝑦𝑗)

𝛴𝑖𝑥𝑖
2  

where 𝑥𝑖 × 𝑦𝑗  is the cross product of the first variable (mosquito-borne disease vulnerability) at location 

i and the second variable (anaemia clusters) at each neighbouring location 𝑗, and 𝑤𝑖𝑗(𝑑) represents the 

weighted value of the neighbourhood between geographical points 𝑖 and 𝑗 at distance d. 

 

Results: 

Distribution of anaemia by selected characteristics 

Anaemia in females and males based on selected characteristics as illustrated in (Table 2) shows that 

environmental factors such as low altitude ranging from 0-100 meters, mean annual temperature above 

20°C, annual rainfall between 1500-2000 mm, and experience of frequent drought episodes in the past 

(index greater than 5) recorded higher anaemia levels in both females and males. The increase in 

enhanced vegetation index favoured higher levels of anaemia among females, with the highest anaemia 

among those residing in areas where the index ranged above 0.30. Females with one or two children 

were found to be more anaemic compared to women with no children; the other characteristics, such as 

Body Mass Index and WASH practices, were also crucial. Those identified females and males who 

were underweight and used unimproved water sources and unimproved toilet facilities had a higher 

share of anaemia in Eastern and North-Eastern India. Considering demographic variables, such as age, 

anaemia was found to be more prevalent among females than males across all age groups, with the 

highest prevalence among females aged 15-24. Contrary to this, the age group 35-49 was most prone to 

anaemia in males. The prevalence of anaemia was highest in the Schedule Caste among females 

(69.04%), and males belonging to the Schedule Tribe (36.22%) were more anaemic than other caste 

groups. Belonging to the Hindu religion, being illiterate, belonging to the poorest wealth quintile and 

living in a rural setup had a higher share of anaemia prevalence in Eastern and North-Eastern India. 

Determinants of Anaemia in Eastern and North-Eastern India 

The binary logistic regression (Table 3) delves into the determinants of anaemia by taking two models 

for males and females each, wherein Model 1 shows the unadjusted odds ratios of environmental 

variables, and Model 2 shows the environmental variables adjusted for potential confounding variables 

attributed to demographic and health characteristics in Eastern and North-Eastern India. The addition 

of socio-demographic factors to environmental factors significantly improved model fit statistics for 

females in the adjusted model (Model 2), compared to the unadjusted model (Model 1), with a higher 

log-likelihood (−124063.22), improved proportion of variance explanatory power (Pseudo R² = 

0.0577), and lower AIC (248194.44) and BIC (248540.38). Similarly, for males, the adjusted model 

(Model 2) improved significantly after adjusting for socio-demographic factors compared to the 

unadjusted model (Model 1), with higher log-likelihood (−13177.86), improved Pseudo R² (0.0433), 

and reduced AIC (26423.71) and BIC (26697.76). 

 

 



10 
 

Table 2: Prevalence of anaemia among females and males according to selected characteristics in 

Eastern and North-Eastern India (NFHS-5) 2019-21 

Background Characteristics 
Females Males 

Frequency Percentage Frequency Percentage 

Altitude in meters 8800***  476.77***  
0-100 79,740 66.84 6,121 33.15 

100-500 21,860 66.8 941 33.7 

500-1000 3,798 53.83 120 19.47 

>1000 970 40.93 70 16.84 

Annual Mean Temperature in °C 8700***  409.38***  
<20 898 35.09 80 15.93 

>20 1,05,471 66.38 7,171 32.92 

Annual Rainfall in mm 858.12***  38.68***  
<1500 15,993 63.49 1,085 27.7 

1500-2000 69,601 66.39 4,311 33.58 

>2000 20,775 66.11 1,854 33.53 

Drought Episodes 3900***  175.80***  
<2 4,003 61.33 340 29.99 

3-5 42,041 64.98 2,966 31.57 

>5 60,325 66.87 3,945 33.56 

Enhanced Vegetation Index 197.52***  8.17*  
<0.20 1,207 61.36 79 34.51 

0.20-0.30 13,608 64.33 983 31.26 

>0.30 91,554 66.19 6,190 32.72 

Children Ever Born 202.64***  -  
0 29,562 64.06 - - 

1-2 43,426 67.32 - - 

>2 33,380 65.72 - - 

BMI 2000***  301.25***  
Normal 64,871 65.84 4,677 32.04 

Underweight 23,363 70.14 1,612 40.18 

Overweight/Obese 18,135 61.25 962 26.17 

Type of Diet Consumption 139.94***  1.6794  
Vegetarian 6,816 65.69 229 30.06 

Non-Vegetarian 99,552 65.9 7,022 32.62 

Source of Water 0.0493  1.1364  
Improved 97,187 65.78 6,896 32.41 

Unimproved 9,181 66.99 355 35.19 

Toilet facility 1600***  101.32***  
Improved 71,672 65.06 5,080 31.13 

Unimproved/No facility/Open defecation 34,696 67.66 2,171 36.37 

Age 137.39*** 41.34*** 

15-24 38,050 66.28 2,427 31.7 

25-34 31,421 65.11 1,906 29.59 

35-49 36,897 66.15 2,917 35.64 

Education level 962.21*** 181.03*** 

No education 29,777 67.39 1,301 40.62 

Primary 14,348 66.63 1,180 32.82 

Secondary 53,244 65.78 4,007 32.32 

Higher 9,000 60.91 763 24.71 

Religion 8,400***  337.65***  
Hindu 88,817 67.04 5,887 33.29 

Muslim 13,112 62.33 1,123 31.46 

Christian 2,904 53.02 186 23.07 

Others 1,535 62.95 55 24.44 

Caste 3700***  72.10***  
Others 23,771 65.05 1,516 30.85 

Schedule Caste 28,379 69.04 2,086 34.97 

Schedule Tribe 15,042 67.37 998 36.22 

OBC 39,176 63.74 2,651 30.64 

Type of Residence 489.18***  97.94***  
Urban 22,468 63.63 1,447 27.09 

Rural 83,900 66.52 5,804 34.25 



11 
 

Table 2 (continued) 

Background Characteristics 
Females Males 

Frequency Percentage Frequency Percentage 

Wealth Index 1600***  252.67***  
Poorest 40,637 68.84 2,993 37.98 

Poorer 28,502 65.66 1,959 31.79 

Middle 18,734 63.75 1,214 30.37 

Richer 12,272 62.91 708 25.39 

Richest 6,224 61.55 377 25.89 

Note: Values in bold indicate chi-square values with significance level  p<0.001***, p<0.01** and p<0.5*  

 

In Eastern and North-Eastern India, the environmental variables demonstrated a significant association 

with anaemia prevalence. The moderate to high-altitude residents were associated with lower odds of 

anaemia compared to the low-altitude residents residing below 100 meters, possibly due to 

physiological adaptations or better nutritional environments. Similarly, females and males in hotter 

regions with annual mean temperature more than 20°C were 65% and 41% more likely to be anaemic 

compared to those in cooler areas having annual mean temperature less than 20°C females [AOR 1.65; 

95% (1.59-1.72)] and males [AOR 1.41; 95% (1.24-1.62)].  

Annual rainfall as a predictor has slight differential effects by gender. The likelihood of anaemia was 

7% higher in females residing in regions having annual rainfall ranging between 1500-2000mm [AOR 

1.07; 95% (1.04-1.10)] compared to females residing in regions receiving annual rainfall less than 

1500mm. However, males residing in regions receiving annual rainfall of more than 2000mm faced a 

14% higher risk of anaemia [AOR 1.14; 95% (1.02-1.27)] than those residing in regions receiving 

annual rainfall of less than 1500mm. Higher temperature could be associated with higher nutritional 

demands and associated co-morbidities through infectious disease, which are significantly associated 

with anaemia. 

The probability of being anaemic increased with an increase in the occurrence of drought episodes in 

the past; Females and males residing in regions experiencing high occurrence of drought episodes in 

the past (index more than 5) had a higher probability of being anaemic; this corresponds to both females 

40% higher risk [AOR 1.40; 95% (1.35-1.44)] and males 32% higher risk [AOR 1.32; 95% (1.20-1.46)] 

compared to males and females residing in regions experiencing low occurrence of drought episodes in 

the past (index less than 2). Drought, as an important driver of agricultural productivity, could possibly 

lead to nutritional deficiency and increase the risk of anaemia.  Enhanced Vegetation Index (EVI) was 

found to be sensitive to adjustment; the output result in model 1 for EVI highlighted those females and 

males residing in the periphery of moderately low to moderate vegetation had higher odds of anaemia 

compared to residents residing in low vegetation periphery. However, with the adjustment of 

environmental variables with other demographic and health-related variables, the AOR results were 

found to be insignificant for both females and males in Eastern and North-Eastern India.  

The other controlling demographic and health variables, such as females and males of age 15- 24, 

belonging to the Hindu religion, having no education, tribal status, rural residence, lower wealth index, 

and low body mass index, were found to be significant predictors of anaemia among females and males 

and higher number of children was exclusive to females in Eastern and North-Eastern India. Overall, 

these findings highlight the critical association between environmental factors and anaemia. 
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Table 3: Output of binary logistic regression model explaining anaemia among females and males 

according to selected characteristics in Eastern and North-Eastern India (NFHS-5) 2019-21 
 

Anaemia Female Male 

Variables Sub-Category 
Model 1 Model 2 Model 1 Model 2 

Odds ratio Odds ratio Odds ratio Odds ratio 

Altitude in meters 

<100 Reference Reference Reference Reference 

100-500 0.77 [0.75-0.79]*** 0.81 [0.79-0.83]*** 0.82 [0.77-0.88]*** 0.84 [0.78-0.91]*** 

500-1000 0.51 [0.49-0.52]*** 0.60 [0.58-0.62]*** 0.59 [0.53-0.65]*** 0.62 [0.55-0.69]*** 

>1000 0.46 [0.45-0.48]*** 0.60 [0.58-0.63]*** 0.47 [0.42-0.54]*** 0.54 [0.46-0.62]*** 

Annual Mean 

Temperature in °C 

<20 Reference Reference Reference Reference 

>20 1.86 [1.79-1.93]*** 1.65 [1.59-1.72]*** 1.51 [1.33-1.71]*** 1.41 [1.24-1.62]*** 

Annual Rainfall in 

mm 

<1500 Reference Reference Reference Reference 

1500-2000 1.08 [1.05-1.11]*** 1.07 [1.04-1.10]*** 1.12 [1.02-1.23]* 1.05 [0.95-1.15] 

>2000 0.95 [0.92-0.97]*** 1.06 [1.03-1.10]*** 1.17 [1.06-1.29]** 1.14 [1.02-1.27]* 

Drought Episodes 

<2 Reference Reference Reference Reference 

3-4 1.21 [1.18-1.24]*** 1.12 [1.09-1.15]*** 1.17 [1.07-1.28]*** 1.14 [1.04-1.26]** 

>5 1.47 [1.43-1.51]*** 1.40 [1.35-1.44]*** 1.38 [1.26-1.52]*** 1.32 [1.20-1.46]*** 

Enhanced 

Vegetation Index 

<0.20 Reference Reference Reference Reference 

0.20-0.30 1.55 [1.42-1.70]*** 1.14 [0.98-1.33] 1.45 [1.11-1.93]* 1.41 [0.88-2.26] 

>0.30 1.60 [1.47-1.74]*** 1.12 [0.96-1.30] 1.46 [1.11-1.93]** 1.28 [0.81-2.04] 

Children Ever 

Born 

0 - Reference - - 

1-2 - 1.18 [1.15-1.21]*** - - 

>2 - 1.13 [1.09-1.17]*** - - 

BMI 

Normal - Reference - Reference 

Underweight - 1.26 [1.23-1.29]*** - 1.42 [1.31-1.54]*** 

Overweight/Obese - 0.81 [0.79-0.83]*** - 0.73 [0.67-0.80]*** 

Type of Diet 

Consumption 

Vegetarian - Reference - Reference 

Non-Vegetarian - 1.00 [0.96- 1.05] - 0.98 [0.80-1.19] 

Source of Water 
Improved - Reference - Reference 

Unimproved - 1.00 [0.97-1.03] - 1.02 [0.93-1.12] 

Toilet facility 
Improved - Reference - Reference 

Unimproved/No facility/Open defecation - 1.00 [0.97-1.02] - 0.94 [0.87-1.01] 

Age 

15-24 - Reference - Reference 

25-34 - 0.90 [0.87-0.92]*** - 0.90 [0.83-0.98]** 

>35 - 0.90 [0.88-0.93]*** - 1.10 [1.02-1.18]* 

Education level 

No education - Reference - Reference 

Primary - 0.98 [0.94-1.01] - 0.87 [0.78-0.97]* 

Secondary - 0.94 [0.84-0.96]*** - 0.80 [0.73-0.87]*** 

Higher - 0.87 [0.84-0.91]*** - 0.69 [0.61-0.79]*** 

Religion 

Hindu - Reference - Reference 

Muslim - 0.76 [0.73-0.79]*** - 0.87 [0.77-0.99]* 

Christian - 0.58 [0.56-0.60]*** - 0.64 [0.57-0.72]*** 

Others - 0.76 [0.73-0.80]*** - 0.86 [0.74-1.00]* 

Caste 

Others - Reference - Reference 

Schedule Caste - 1.01 [0.98-1.05] - 1.10 [0.98-1.23] 

Schedule Tribe - 1.08 [1.04-1.12]*** - 1.40 [1.25-1.58]*** 

OBC - 0.94 [0.91-0.97]*** - 1.03 [0.93-1.14] 

Type of Residence 
Urban - Reference - Reference 

Rural - 1.06 [1.03-1.09]*** - 1.19 [1.09-1.30]*** 

Wealth Index 

Poorest - Reference - Reference 

Poorer - 0.88 [0.86-0.91]*** - 0.84 [0.78-0.91]*** 

Middle - 0.86 [0.83-0.88]*** - 0.85 [0.77-0.93]*** 

Richer - 0.82 [0.79-0.85]*** - 0.80 [0.71-0.90]*** 

Richest - 0.82 [0.77-0.86]*** - 0.79 [0.66-0.95]** 
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Table 3 (continued) 

Anaemia Female Male 

Model Fit Model 1 Model 2 Model 1 Model 2 

Log Likelihood -137826.49 -124063.22 -14872 -13177.86 

Pseudo R² 0.0437 0.0577 0.0238 0.0433 

AIC 275674.99 248194.44 29766.003 26423.71 
BIC 275787.92 248540.38 29855.674 26697.76 

Note: Significance level  p<0.001***, p<0.01** and p<0.5*; AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion 

 

 

Fig. 3: Spatial Distribution/ Clustering of Anaemia among (a) females and (b) males in Eastern and 

North-Eastern India (NFHS-5) 2019-21 
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Spatial clustering of anaemia in Eastern and North-Eastern India 

The output of hotspot analysis of anaemia clusters in the Eastern and North-Eastern regions of India, as 

shown in (Fig. 3), with Moran's I values of 0.47 and 0.18, signified significant autocorrelation and a 

clustering pattern of anaemia among females and males, respectively. 

The clustering of hotspots (i.e high prevalence clustering) was significantly concentrated in the 

floodplain regions of Gangetic, Brahmaputra and Mahanadi belts, with pockets over Tripura, the 

southern tip of Odisha and North-Eastern Arunachal Pradesh. The districts such as Dakshin Dinajpur, 

Paschim Medinipur, Purba Barddhaman, Murshidabad, Hugli, Koch Bihar, Maldah, and Nadia in West 

Bengal; Udalguri, and Golaghat in Assam; Jamui, Bhojpur and Bhagalpur in Bihar; Pakur and Jaamtara 

in Jharkhand; and Anugul in Odisha. Similarly, the clustering of coldspots was found to be in the Eastern 

Himalayan belt, extending from the hilly regions of Sikkim to the North-Eastern states of Arunachal 

Pradesh, Nagaland, Manipur, and Mizoram in both females and males. The output result of spatial 

clustering of anaemia hotspots in females and males had a similar pattern, with a higher concentration 

of clustering in females and a lower concentration among males. 

Mosquito-Borne disease vulnerability and its spatial association with anaemia clusters  

The final output of Mosquito-Borne Disease vulnerability generated through the analytical hierarchy 

process (AHP) as highlighted in (Fig. 4), represents a similar trend of high vulnerability over the 

floodplain regions of Gangetic, Brahmaputra, and Mahanadi belt covering Bihar, West Bengal, Assam, 

parts of Odisha and Jharkhand, with pockets over Tripura, the southern tip of Odisha and western 

Meghalaya. On the other hand, the very low vulnerability was concentrated in the Eastern Himalayan 

belt, extending from the hilly regions of Sikkim to the North-Eastern states of Arunachal Pradesh, 

Nagaland, Manipur, and Mizoram, along with parts of Meghalaya, Jharkhand and southern Odisha.  

 

 

Fig. 4: AHP generated Mosquito-Borne Disease Vulnerability Map of Eastern and North-

Eastern India 
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The output of a bivariate Local Indicator of Spatial Association (LISA) map (Fig. 5) with Moran's I 

values of 0.42 and 0.31 indicated a significant positive spatial association between mosquito-borne 

disease and anaemia among females and males in Eastern and North-Eastern India. The spatial 

association between high mosquito-borne disease vulnerability zones and high anaemia among females 

and males over the flood plain zones, signified by red high-high clusters, can be perceived as fitting to 

the environmental conditions such as wet, warm and humid climatic conditions alongside lower 

altitudes. In contrast, the low mosquito-borne disease vulnerability zones and low anaemia among 

females and males, signified by blue low-low clusters, were concentrated over the Eastern Himalayan 

region of North-East India. The conditions mentioned above render the mosquito vectors' thriving 

capacity exposed to the population, causing diseases like malaria, dengue, and chikungunya, which 

have ample clinical studies that have evidence of a close association with anaemia. 

 
Fig. 5: Bivariate LISA map showing the spatial association between Mosquito-Borne Disease 

Vulnerability and Anaemia Hotspots among (a) females and (b) males in Eastern and North-Eastern 

India 
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Discussion: 

The study on anaemia among males and females over the Eastern and North-Eastern regions highlights 

significant findings that can be summed up broadly on determinants and clustering of anaemia and its 

spatial association with mosquito-borne diseases.  

The study highlighted that clustering of hotspots of anaemia among females and males was mainly 

concentrated in flood plains of Bihar, West Bengal, Odisha, Assam and parts of Tripura covering 

districts such as Dakshin Dinajpur, Paschim Medinipur, Purba Barddhaman, Murshidabad, Hugli, Koch 

Bihar, Maldah, and Nadia in West Bengal; Udalguri, and Golaghat in Assam; Jamui, Bhojpur and 

Bhagalpur in Bihar; Pakur and Jamtara in Jharkhand; and Anugul in Odisha and cold spots was 

primarily concentrated over the Eastern Himalayas of Sikkim, Arunachal Pradesh, Mizoram, Manipur 

and Nagaland. Our study is the first to present anaemia clustering dropping down from district to cluster 

level for Eastern and North-Eastern India using the latest round of NFHS surveys. Similarly, the study 

shows near similar spatial patterns and anaemia clustering in a nationally represented study using 

NFHS-5 at the district level for females and males in Eastern and North-Eastern India. Studies that 

explored district-level anaemia prevalence [14, 24, 64] And some regional studies support our finding 

of the prevalence of anaemia [16, 65]. However, our study is more detailed and highlights the micro-

level spatial clustering of disease. 

In addition, low residential altitude as an environmental factor was found to be an essential predictor 

associated with higher anaemia prevalence; the odds of anaemia decreased as residential elevation 

increased in Eastern and North-Eastern India. Low altitude anaemia prevalence can be associated with 

numerous factors, predominantly socio-cultural factors, alongside environment, which can be 

associated to high anaemia prevalence. Studies in India highlight that increased pollutants, such as 

increased ambient PM2.5 exposure, result in anaemia among women of the reproductive age group, 

with a prominent effect over regions of coal units spread over the Gangetic Plains [66, 67]. Hypoxia 

also contributes to low levels of anaemia at higher altitudes, a condition of physiological adaptation to 

low parcel pressure oxygen at high altitudes in the form of increased concentration of haemoglobin 

[68]. Several studies mention this phenomenon in different samples of high-altitude residents, 

particularly in Andean and Tibetan populations [69–71]. 

Furthermore, high mean annual temperature and high annual rainfall as climatic factors were found to 

be an essential risk factor associated with anaemia prevalence compared to regions with mean annual 

temperatures less than 20°C and rainfall less than 1500mm. The association between high temperature 

and childhood anaemia is limited, but studies have documented that a 1°C increase in mean annual 

temperature was associated with a 13.8% increase in anaemia and further projected increase of anaemia 

by 7,597 per 100,000 person-years in 2090 among children of 26 Sub-Saharan Africa under high 

emission climatic scenario, three times more than low emission scenario [72]. The evidence on annual 

rainfall directly associated with anaemia was not available as such, but studies report that an increase 

in rainfall was linked with the maternal outcome of anaemia [73]; alongside, a study on riverine regions 

of Brazil highlights mean haemoglobin and haematocrit levels among children and adolescents to be 

higher in the dry season, wherein the anaemia prevalence was reported to be 4% in the dry season 

against 12% in the rainy season [74]. 

On the other hand, compared to regions experiencing lower drought episodes in the past, the regions 

with an index of more than 5 drought episodes in the past, as meteorological hazards, were found to be 

associated with higher anaemia prevalence among both females and males in Eastern and North-Eastern 

India. Studies highlight the increase in the frequency and intensity of droughts in the Indian sub-

continent, with high impacts on the agricultural belt of Maharashtra and the Indo-Gangetic Plains, 
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hampering food security issues and socio-economic vulnerability [75]. Studies and reviews in drought-

affected communities in South-Central Ethiopia and Africa also linked the nutritional outcome of 

anaemia as an effect of drought exacerbated by socio-economic factors and malaria [76, 77].  

The environmental determinants, except altitude, do not directly contribute to anaemia; instead, 

calamities such as floods and droughts compound agricultural failure and food security issues, alongside 

changing climatic conditions, affecting heat-related disease, waterborne disease and infection, are 

linked with higher prevalence of anaemia. The environmental characteristics associated with anaemia 

mentioned above are typical to humid subtropical regions favourable for breeding and infection through 

mosquito-borne diseases, particularly malaria and dengue [78]. Considering these findings, the 

environmental and socio-economic characteristics-based vulnerability map of mosquito-borne disease 

was generated. The output results found a significant spatial association of mosquito-borne disease 

vulnerability with anaemia. Anaemia due to malaria and dengue can be attributed to high loss of (RBC) 

red blood cells due to rupturing of RBCs by the malaria virus and cytopenia, and gastrointestinal 

bleeding in dengue [79–82]. The finding remains constant, with studies reporting that districts with 

more than 23.6% anaemia prevalence had higher odds of being malaria endemic districts, with similarly 

high annual parasitic index and anaemia patterns among males in Eastern and North-Eastern India [83]. 

The findings on socio-demographic determinants of anaemia highlighted that females and males aged 

15- 24, belonging to the Hindu religion, having no education, tribal status, rural residence, and lower 

wealth index are linked with a higher risk of having anaemia in India. Studies with similar findings at 

the national and sub-national levels in India can be found [11–16]. These factors also correspond to 

socio-cultural practices, norms, and attitudes alongside inequality and marginality, directly associated 

with nutritional status. The study also focuses on health factors, where a higher number of children ever 

born was found to be a risk factor for anaemia; similar findings can be traced in studies at the national 

level, the reason being multiple gestations resulting in higher iron demand and blood loss during 

complications [12, 84, 85]. The underweight category in BMI was associated with a higher anaemia 

burden; such an association has been established in India and several other countries as well, but the 

explanation for it remains bounded by low nutritional intake, failure of nutritional absorption, 

physiological disadvantage and so on [13, 14, 86–88]. 

Limitations: 

The study incorporates environmental factors into all individual categories, assuming environmental 

factors are constant for all individuals within clusters. Although DHS purposively does it to maintain 

respondents’ privacy, the level of displacement in urban and rural areas is minimal. However, individual 

data on environmental factors would suffice for the study to measure environmental determinants of 

health more significantly. 

Data on selected important vector-borne diseases are administered by the National Centre for Vector 

Borne Disease Control (Ministry of Health and Family Welfare, Government of India), such as malaria, 

dengue, chikungunya, etc. The majority of diseases are reported at the state level. The micro-level 

geospatial data on mosquito-borne disease was generated using geospatial modelling through available 

environmental and socio-economic data. As far as our knowledge goes, this is the first of its kind to 

visualise the clustering of anaemia with mosquito-bornedisease vulnerability. The real-time micro-level 

data on prevalence and fatality would suffice for more accurate output. 

Conclusion: 

The study highlights a strong association between anaemia and environmental factors, particularly high 

mean annual temperatures, high annual rainfall, and recurrent drought episodes among females and 
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males in Eastern and North-Eastern India. The findings call for a shift beyond socio-economic and 

health service determinants to a more comprehensive framework that integrates environmental factors 

in addressing anaemia. 

The findings on spatial clustering of anaemia and its spatial association with mosquito-borne disease 

vulnerability underscore the need for a coordinated public health approach targeting females and males 

in the floodplain regions of Eastern and NorthEastern India. At the early detection level, a coordinated 

synergy between the existing Integrated Disease Surveillance Programme (IDSP) and the National 

Centre for Vector-Borne Disease Control is essential. This approach would help in regulating routine 

Web-GIS-based surveillance and biomarker tracking of syndromic symptoms for early detection and 

further research on disease outbreaks. 

At the prevention and response level, integrated vector control, environmental management, and 

community education should be inculcated in anaemia reduction strategies. This could be achieved by 

deploying community health workers to raise environmental-risk awareness and promote vector 

prevention, alongside iron and folic acid supplementation and nutritional education. Furthermore, more 

detailed research should build on these findings by incorporating longitudinal data on environmental 

exposures to better understand causal pathways between environmental exposures and anaemia. 
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Supplementary Material: 

 

Fig.S1: Global Spatial Autocorrelation report of Anaemia Prevalence among females in Eastern and 

North-Eastern India 
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Fig.S2: Global Spatial Autocorrelation report of Anaemia Prevalence among males in Eastern and 

North-Eastern India 
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Fig. S3: Geospatial Data input for generation of Mosquito-Borne Disease Vulnerability Map for Eastern 

and North-Eastern India 

 
Note: (a) Altitude: Digital Elevation Model, (b) Topographic Wetness Index, (c) Normalized Difference 

Vegetation Index, (d) Land use Land Cover, (e) Annual Mean Temperature, (f) Annual Rainfall, (g) 

Population Density, and (h) Proportion Poor 
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Table S1: Unweighted distribution of sampled females and males according to selected 

characteristics in Eastern and North-Eastern India (NFHS-5) 2019-21 

Background 

Characteristics 
Sub Categories 

Females Males 

Freq. Percent Freq. Percent 

Anaemia Status 
Not anaemic 88,561 41.34 18,595 71.65 

Anaemic 1,25,670 58.66 7,358 28.35 

Altitude in 

meters 

0-100 1,11,416 52.01 12,993 50.06 

100-500 54,982 25.66 6,737 25.96 

500-1000 25,822 12.05 3,270 12.6 

>1000 22,011 10.27 2,953 11.38 

Annual Mean 

Temperature in 

°C 

<20 28,647 13.44 3,755 14.58 

>20 1,84,507 86.56 21,994 85.42 

Annual Rainfall 

in mm 

<1500 31,889 14.96 3,688 14.32 

1500-2000 1,05,882 49.67 12,545 48.72 

>2000 75,383 35.37 9,516 36.96 

Drought 

Episodes 

<2 35,354 16.64 4,465 17.41 

3-5 80,815 38.03 9,714 37.88 

>5 96,317 45.33 11,463 44.7 

Enhanced 

Vegetation Index 

<0.20 2,199 1.03 264 1.03 

0.20-0.30 20,214 9.48 2,462 9.56 

>0.30 1,90,741 89.49 23,023 89.41 

Children Ever 

Born 

0 65,849 30.74 - - 

1-2 81,581 38.08 - - 

>2 66,801 31.18 - - 

BMI 

Normal 1,39,292 65.08 17,513 67.56 

Underweight 37,444 17.49 3,554 13.71 

Overweight/Obese 37,305 17.43 4,857 18.74 

Type of Diet 

Consumption 

Vegetarian 9,008 4.2 532 2.05 

Non-Vegetarian 2,05,223 95.8 25,421 97.95 

Source of Water 
Improved 1,87,871 87.7 23,145 89.18 

Unimproved 26,360 12.3 2,808 10.82 

Toilet facility 

Improved 1,59,200 74.31 19,979 76.98 

Unimproved/No 

facility/Open defecation 
55,031 25.69 5,974 23.02 

Age 

15-24 72,292 33.74 8,375 32.27 

25-34 66,319 30.96 7,612 29.33 

35-49 75,620 35.3 9,966 38.4 

Education level 

No education 50,784 23.71 3,355 12.93 

Primary 28,469 13.29 3,643 14.04 

Secondary 1,15,251 53.8 15,462 59.58 

Higher 19,727 9.21 3,493 13.46 

Religion 

Hindu 1,32,495 61.85 15,698 60.49 

Muslim 25,988 12.13 3,155 12.16 

Christian 42,637 19.9 5,403 20.82 

Others 13,111 6.12 1,697 6.54 

Caste 

Others 27,198 13.91 3,138 13.26 

Schedule Caste 33,976 17.38 3,853 16.29 

Schedule Tribe 74,918 38.33 9,693 40.97 

OBC 59,386 30.38 6,973 29.48 

Type of 

Residence 

Urban 38,241 17.85 5,100 19.65 

Rural 1,75,990 82.15 20,853 80.35 

Wealth Index 

Poorest 75,039 35.03 8,586 33.08 

Poorer 62,222 29.04 7,819 30.13 

Middle 40,865 19.08 4,978 19.18 

Richer 25,216 11.77 3,290 12.68 

Richest 10,889 5.08 1,280 4.93 
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Table S2: Variance Inflation Factor (VIF) and Tolerance Values for Multicollinearity Diagnostics 

 

Variable 

Female Male 

VIF Tolerance VIF Tolerance 

          

Annual Mean Temperature in °C 2.04 0.490564 2.03 0.491574 

Children Ever Born 1.91 0.523202 1.9 0.526088 

Age 1.87 0.536027 1.85 0.541971 

Altitude in meters 1.79 0.558068 1.76 0.567751 

Wealth Index 1.71 0.585952 1.7 0.589125 

Religion 1.63 0.614685 1.6 0.625383 

Education level 1.58 0.63178 1.3 0.771032 

Drought Episodes 1.37 0.72813 1.36 0.737502 

Annual Rainfall in mm 1.31 0.763325 1.3 0.767628 

Type of Residence 1.3 0.767678 1.29 0.777552 

Toilet facility 1.29 0.776507 1.26 0.792397 

Enhanced Vegetation Index 1.07 0.931858 1.08 0.928886 

Source of Water 1.05 0.955405 1.04 0.958322 

BMI 1.04 0.95991 1.04 0.959262 

Type of Diet Consumption 1.03 0.969467 1.02 0.980671 

Caste 1.03 0.975138 1.03 0.974489 

          

Mean VIF 1.44   1.41   

 

 

 

 

 

Table S3: Pairwise Comparison Matrix for Mosquito-Borne Disease Vulnerability Map 

Decision Matrix V1 V2 V3 V4 V5 V6 V7 V8 

Principle 

Eigen 

Vector 

Weights Rank 

V1 1 1 0.5 1 0.33 0.33 1 1 0.0753 7.50% 7 

V2 1 1 1 1 0.33 0.33 1 1 0.0807 8.10% 5 

V3 2 1 1 1 0.33 0.33 1 1 0.0899 9.00% 4 

V4 1 1 1 1 0.33 0.33 1 1 0.0807 8.10% 5 

V5 3 3 3 3 1 0.33 3 3 0.2192 21.90% 2 

V6 3 3 3 3 3 1 3 2 0.2838 28.40% 1 

V7 1 1 1 1 0.33 0.33 1 0.5 0.0749 7.50% 8 

V8 1 1 1 1 0.33 0.5 2 1 0.0956 9.60% 3 

Number of 

comparisons 
28 

Note: V1: Annual Rainfall, V2: Normalized Differential Vegetation Index (NDVI), V3: Land Use 

Land Cover, V4: Annual Mean Temperature, V5: Altitude in meters, V6: Topographic Wetness 

Index, V7: Population Density, and, V8: Proportion Poor 

Consistency Ratio 

(CR) 
2.40% 

Principal eigen 

value (λ) 
8.24 
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Table S4: Assignment of Risk Values to Geospatial Categories 

Variable Categories Weights Risk Value 

Topographic Wetness Index 

Very Low 

28.4 

1 

Low 2 

Moderate 3 

High 4 

Very High 4 

Altitude in meters 

>2000 

21.9 

1 

75-2000 1 

50-75 2 

10-50 4 

<10 5 

Proportion Poor 

<20 

7.5 

1 

20-40 2 

40-60 2 

60-80 3 

>80 3 

LULC 

Snow 

9 

1 

Barren Land 1 

Dense Vegetation 2 

Agricultural Land 2 

Settlements 4 

Waterbodies 5 

NDVI 

<0 

8.1 

1 

0-0.1 2 

0.1-0.3 2 

0.3-0.5 4 

>0.5 3 

Temperature in °C 

<10 

8.1 

1 

10-15 1 

15-20 1 

20-25 3 

>25 3 

Rainfall in mm 

<1000 

7.5 

1 

1000-2000 2 

2000-3000 3 

3000-4000 3 

>4000 3 

Population Density 

<99 

7.5 

1 

100-999 1 

1000-2999 3 

3000-4999 4 

>5000 5 

 

 


