
 1 

Estimating Health-State Transition Probabilities 
Using Repeated Cross-sectional Data 

from the 2021 and 2024 Surveys of Older Persons in Thailand1 
 
 

Natthachanaphong Teanworakoon2 
Orawan Prasitsiriphon2 

Poontavika Naka3 
 

 
Abstract 
 
 
 As population aging accelerates globally, understanding the dynamics of health 
transitions among the elderly is crucial for public health planning. In developing contexts 
like Thailand, where longitudinal data are limited, estimating these dynamics remains 
challenging. This study develops a three-state Markov model (Independent, Dependent, 
and Death) using repeated cross-sectional data from the National Statistical OHice’s 
Survey of the Older Persons in Thailand (2021 and 2024). We estimated age- and sex-
specific 3-year transition probabilities to capture health dynamics. The results indicate that 
the probability of maintaining current health status decreases with age, while the 
probability of transitioning to dependency and death steadily increases, reflecting the 
natural physiological decline associated with aging. Beyond these general trends, the 
findings confirm the existence of a "morbidity–mortality paradox": males exhibit high 
mortality from an independent state but low morbidity, whereas females demonstrate 
greater longevity accompanied by higher rates of transition to dependency. To demonstrate 
the utility of these estimates, we provided a calculation method for projecting the 
population categorized by health status from 2024 to 2036. This study confirms the 
feasibility of using repeated cross-sectional data to estimate health dynamics in resource-
limited settings and highlights the urgent need for age- and gender-specific long-term care 
policies. 
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1. Introduction 
 
 
 The decline in birth and death rates due to demographic transitions in many 
countries has resulted in a rapid increase in the proportion of elderly people worldwide 
(United Nations, 2023, 2024a). Similarly, in Thailand, the proportion of elderly people was 
5.00% in 1950 but increased to 21.19% in 2023 (United Nations, 2024b). Based on 
population projections, this upward trend in the proportion of elderly people in Thailand is 
expected to continue in the future, as shown in Figure 1.  
 

Figure 1 The proportion of the population aged 60 years or older in Thailand and globally, 
from 1950 to 2100. 

 
Data source: Estimates and projections from the "World Population Prospects 2024". 

(United Nations, 2024b) 
 
 
 While increased life expectancy is a testament to public health success, it raises 
critical questions in about the quality of those additional years—specifically, whether they 
are lived in good health or with disability. Thailand, as an upper-middle-income country 
(OECD, 2025), should consider future health data for its aging population in order to prepare 
its public health system. This is because reports from the World Health Organization 
indicate that the burdens of disability and death in low- and middle-income countries are 
significantly higher than in high-income countries (World Health Organization, 2015). 
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 Understanding the dynamics of health transitions—how individuals move between 
states of independence, dependency, and death—is essential for forecasting future care 
needs. Ideally, such analyses rely on longitudinal data (Courgeau, 2001; Pitacco, 1995; van 
den Hout, 2016). However, in many developing nations, including Thailand, high-quality 
longitudinal surveys on aging are scarce or suHer from high attrition rates.  Conversely, 
nationally representative cross-sectional surveys on issues concerning the elderly are 
conducted at regular intervals by the National Statistical OHice under the name of the 
Survey of Older Persons in Thailand (National Statistical OHice, 2024). 
 
 Previous studies in Thailand have largely relied on transition probabilities derived 
from other countries (Srithamrongsawat et al., 2014; Tantirat et al., 2020) or have used static 
prevalence rates for projections (Chandoevwit & Vajragupta, 2017; Loichinger & Pothisiri, 
2018), which have limitation to capture the dynamic nature of health deterioration and 
mortality. This study addresses this gap by developing a discrete-time Markov model using 
repeated cross-sectional data from 2021 and 2024. The objectives are to (1) estimate age- 
and sex-specific transition probabilities between independent, dependent, and dead 
states, and (2) demonstrate a calculation method for projecting the future health status of 
the Thai elderly population up to 2036. 
 
 
2. Estimating Health Transitions from Cross-Sectional Data 
 
 
 To analyze the dynamics of health status changes among the elderly, this study 
employs a multi-state model (or multi-state survival model), a statistical approach widely 
applied in epidemiology, actuarial science, and demography to study processes involving 
transitions between states, whether in health or other demographic aspects (Dickson et al., 
2019; van den Hout, 2016; Willekens, 2003). 
 
 
 2.1 The Markov Chain Approach 
 
 
 The health transition process is conceptualized as a stochastic process, specifically 
a Markov chain. A fundamental assumption of this model is the Markov property, which 
posits that the future state of an individual depends solely on their current state, 
independent of their history (Dickson et al., 2019; Levin & Pere, 2017; van den Hout, 2016). 
While real-world health trajectories may not strictly adhere to this property, Markov models 
are empirically proven to provide robust approximations for population-level estimation 
(van den Hout, 2016). 
 
 In a discrete-time framework, the model estimates transition probabilities (𝑝!" ), 
representing the likelihood of an individual moving from state 𝑖  to state 𝑗  over a specific 
interval. These probabilities must satisfy two conditions: (1) probability of a state transition 
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must be between 0 and 1 (0 ≤ 𝑝𝒾𝑗 ≤ 1) , and (2) the sum of probabilities for all possible 
transitions from a starting state 𝑖 must equal 1 (∑ 𝑝"	 𝒾𝑗 = 1) (Ibe, 2013) 

 
 
 2.2 The Use of Cross-Sectional Data 
 
 
 Ideally, estimating transition probabilities requires longitudinal data that tracks 
individuals over time (Ibe, 2013; van den Hout, 2016). However, such data are often scarce 
or costly in developing nations. Consequently, researchers have developed methodologies 
to estimate these probabilities using repeated cross-sectional data .This estimation relies 
on the critical assumption of a stationary population between the two survey points. A 
stationary population implies constant age-specific mortality rates, a constant number of 
births, and, crucially, zero net migration (a closed population) (Preston et al., 2001). Under 
these conditions, the structure of the population remains constant over time, allowing 
researchers to link the observed prevalence rates with mortality rates to solve for the 
unknown transition probabilities via a system of equations (Albarran et al., 2005; Kessy et 
al., 2024; Naka et al., 2020; Nuttall et al., 1994; Rickayzen & Walsh, 2002). 
 
 Furthermore, due to the limitations of cross-sectional data, particularly the absence 
of observed recovery rates, it is standard practice to assume irreversible health 
deterioration (no recovery) (Albarran et al., 2005; Davis et al., 2002; Lim et al., 2019; Nuttall 
et al., 1994; Sherris & and Wei, 2021). Under this assumption, individuals can only remain in 
their current health state or deteriorate to a dependent state or death. This approach 
simplifies the model parameters, allowing them to be estimable from aggregate data, while 
aligning with the general biological trajectory of aging (Albarran et al., 2005). 
 
 
 2.3 General Trends in Health Transitions 
 
 
 Disspite the different defination of health states, previous studies utilizing this cross-
sectional estimation method have consistently identified distinct age and sex patterns. 
Generally, the probability of death increases with age for all health states, with those in 
poorer health exhibiting higher mortality risks. A key demographic pattern typically observed 
is that males exhibit higher mortality rates (lower survival probabilities) than females across 
all health states (Albarran et al., 2005; Kessy et al., 2024; Naka et al., 2020; Park & Sherris, 
2023). Conversely, females tend to have a higher probability of transitioning from a healthy 
to a dependent state and a higher probability of remaining in a dependent state compared 
to males (Park & Sherris, 2023), but these values decrease with age (Kessy et al., 2024). This 
divergence underscores the importance of sex-disaggregated analysis in projecting future 
care needs. 
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3. Methodology 
 
 
 This study employs a quantitative research design based on secondary data 
analysis. The methodology comprises four main stages: (1) data preparation and defining 
health states, (2) mortality estimation via cohort subtraction, and (3) estimation of 
transition probabilities using numerical optimization. 
 
 
 3.1 Data Sources and Study Population 
 
 
 The primary data were obtained from the Survey of the Older Persons in Thailand, a 
nationally representative cross-sectional survey conducted by the Thailand National 
Statistical OHice (NSO). We utilized two rounds: 
 

(1)  Baseline: 2021 (𝑡) covering individuals aged 57 and over. 
(2) Follow-up: 2024 (𝑡 + 3)  covering individuals aged 60 and over. 

 
 The age criteria were selected to facilitate cohort tracking over the 3-year interval, as 
shown in Table 1,assuming that a person aged 𝓍 in 2021 would be aged 𝓍 + 3 in 2024. For 
instance, the cohort aged 57 – 59 in 2021 corresponds to the group aged 60 – 62 in 2024. All 
data were weighted to reflect the national population structure. 
 

Table 1 Coding and interpretation of age groups from the 2021 and 2024 Survey of the Older 
Persons in Thailand 

2021 Survey 2024 Survey 

code Age Group code Age Group 
57 57 - 59 60 60 - 62 
60 60 - 62 63 63 - 65 
63 63 - 65 66 66 - 68 
66 66 - 68 69 69 - 71 
69 69 - 71 72 72 - 74 
72 72 - 74 75 75 - 77 
75 75 - 77 78 78 - 80 
78 78 - 80 81 81 - 83 
81 81 + 84 84 + 
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 For the projection baseline and future cohort assumptions, we integrated 
demographic data from the United Nations' World Population Prospects 2024 to define the 
baseline population and future cohort structures. 
 
 
 3.2 Measures and Health States 
 
 
 Health status was categorized based on Activities of Daily Living (ADLs)(Katz et al., 
1963). The study assessed functional ability across five basic activities: feeding, 
transferring, toileting, dressing, and bathing. We assessed functional ability across five 
basic activities: feeding, transferring, toileting, dressing, and bathing. The study defined a 
3-state model space 𝑆 = {𝐼, 𝐷, 𝑋}: 
 

(1) Independent (I): Ability to perform all five ADLs without assistance (ADL score = 5).  
(2) Dependent (D): Inability to perform at least one ADL without assistance (ADL score 

< 5). 
(3) Death (X): An absorbing state representing mortality. 

 
 
 3.3 Estimation of Mortality 
 
 
 Since the data are cross-sectional, direct linkage of individual mortality records was 
not possible. We estimated the number of deaths for each age-sex cohort using the cohort 
subtraction method. The validity of this approach relies on the consistency of the population 
weights; specifically, the NSO calibrated the design weights for both survey rounds to align 
with the official population projection by age, sex, and region, calculated by the Thailand 
Office of the National Economic and Social Development Council (NESDC) (National 
Statistical Office, 2022, 2024). Crucially, these NESDC projections were constructed under 
the assumption that international migration had a negligible impact on Thailand's 
population structure and was therefore excluded from the calculation (NESDC, 2019). 
Consequently, under this closed-population framework, any observed reduction in the size 
of a specific birth cohort over the time interval can be attributed solely to mortality. 
 
 First, to mitigate sampling noise and potential age-reporting errors common in survey 
data, we applied Poisson P-splines smoothing (Currie et al., 2004; Eilers & Marx, 2021) to 
the weighted population counts ( 𝑁𝓍

%
&
	 ) for both years. The number of deaths ( 𝐷𝓍	&

	 ) for a cohort 
aged 𝓍 in 2021 was calculated as: 
 

𝐷𝓍	&
	 = 𝑁𝓍

'(')	(+,) − 𝑁𝓍
'('.	(+,)

&
	

&
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where 𝑁𝓍
%	(+,)

&
	  represents the smoothed population of the specific 3-year age group in year 

𝑦. This derived death count was then incorporated into the 2024 prevalence vector to 
account for the absorbing state.  
 
 
 3.4 Estimation of Transition Probabilities 
 
 
 We modeled the health transitions using a discrete-time Markov chain with a 3-year 
step. Given the scarcity of longitudinal data in Thailand, individual-level status transitions 
could not be directly tracked. Consequently, this study inferred population-level health 
dynamics by analyzing changes in aggregate age-specific prevalence rates across the two 
survey rounds.  
 
 Therefore, after adjusting the independent and dependent population counts 
obtained from the survey to match the smoothed population ( 𝑁𝓍

%
&
	 ), we can calculate the 

age-specific prevalence rates for each year. The values for all three statuses will be 
included as members of the age-specific prevalence vector for that year. Let 𝑃'(')

[𝓍,𝓍1'] be the 
observed prevalence vector of independent and dependent states (with death initialized at 
0) 8𝐼'(')

[𝓍,𝓍1'] 𝐷'(')
[𝓍,𝓍1'] 09 at baseline, and 𝑃'('.

[𝓍,𝓍1'] be the observed prevalence vector 
8𝐼'('.
[𝓍,𝓍1'] 𝐷'('.

[𝓍,𝓍1'] 𝑋'('.
[𝓍,𝓍1']9 at follow-up (where the numerator of 𝑋'('.

[𝓍,𝓍1'] is derived from 
the estimated mortality). 
 
 To quantify the health dynamics, the health state transitions over the 3-year interval 
for each age cohort 𝓍 were simulated using a transition probability matrix (𝑇[𝓍,𝓍1']). This 
matrix encapsulates the probabilities of all possible health trajectories—specifically, 
remaining in the same state, deteriorating to a dependent state, or dying. The structure and 
permissible transitions within this matrix are governed by two fundamental assumptions: 
 

(1) Irreversible Health Deterioration: The model assumes no recovery to a better state 
once one has entered a worse state, as shown in Table 2. This assumption is 
acceptable for elderly populations where functional decline is often progressive 
(Albarran et al., 2005).  

(2) Closed Population: The analysis assumes zero net migration for the elderly 
population, implying that attrition from a cohort is solely attributable to mortality. 
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Table 2 the possible transition of health status from 2021 to 2024 under the assumption of 
irreversible health deterioration. 

Health Status 2024 

Independent Dependent Death 

20
21

 Independent I → I I → D I → X 

Dependent D ↛ I D → D D → X 
Death X ↛ I X ↛ D X → X 

 
 
Under these two assumptions, for each age group 𝓍, the transition probability matrix is 
defined as: 
 

𝑇[𝓍,𝓍1'] = <
𝑝&	 𝓍33 𝑝&	 𝓍34 𝑝&	 𝓍35

𝑝&	 𝓍43 𝑝&	 𝓍44 𝑝&	 𝓍45

𝑝&	 𝓍53 𝑝&	 𝓍54 𝑝&	 𝓍55
=	

	

= <
𝑝&	 𝓍33 𝑝&	 𝓍34 𝑝&	 𝓍35

0 𝑝&	 𝓍44 𝑝&	 𝓍45
0 0 1

= 

 
 To estimate the unknown transition probabilities ( 𝑝&	 𝓍

!"), we constructed a system of 
linear equations based on the law of total probability. The relationship between the health 
status distribution in 2021 and 2024 is modeled by the matrix equation: 
 

𝑃?'('.
[𝓍1&,𝓍16] = 𝑃'(')

[𝓍,𝓍1'] × 𝑇[𝓍,𝓍1'] 
 
where 𝑃?'('.

[𝓍1&,𝓍16] = 8𝐼A'('.
[𝓍1&,𝓍16] 𝐷B'('.

[𝓍1&,𝓍16] 𝑋?'('.
[𝓍1&,𝓍16]9 represents the predicted prevalence 

vector for the follow-up year. By expanding the matrix multiplication, we derived a system of 
three distinct equations representing the predicted prevalence for each health state in 
2024: 
 

(1) Predicted Independent State: 

 
𝐼A'('.
[𝓍1&,𝓍16] = 𝐼'(')

[𝓍,𝓍1'] × 𝑝&	 𝓍33  
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(2) Predicted Dependent State: 

 
𝐷B'('.
[𝓍1&,𝓍16] = C𝐼'(')

[𝓍,𝓍1'] × 𝑝&	 𝓍34D + C𝐷'(')
[𝓍,𝓍1'] × 𝑝&	 𝓍44D 

 
(3) Predicted Death State: 

 
𝑋?'('.
[𝓍1&,𝓍16] = C𝐼'(')

[𝓍,𝓍1'] × 𝑝&	 𝓍35D + C𝐷'(')
[𝓍,𝓍1'] × 𝑝&	 𝓍45D 

 
 After creating the equation system, we then employed a numerical optimization 
technique using the Generalized Reduced Gradient (GRG) nonlinear algorithm to solve for 
the unknown probabilities. The objective was to minimize the sum of squared diHerences 
(SSD) between these predicted values and the actual observed values from the 2024 data:  
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑍	 = K C𝑃'('.,7	
[𝓍,𝓍1'] − 𝑃?'('.,7

[𝓍,𝓍1']D
'

78{3,4,5}

 

 
In order to ensure mathematical validity, the optimization process was performed subject 
to two fundamental constraints: (1) all transition probabilities were restricted to the closed 
interval [0,1] (0 ≤ 𝑝𝒾𝑗 ≤ 1). (2) the transition matrix was constrained to be row stochastic, 
requiring that the sum of probabilities for transitioning from any given state 𝑖 to all possible 
future states must equal 1 (∑ 𝑝"	 𝒾𝑗 = 1). 
 
 To ensure biological plausibility and reduce fluctuations due to small sample sizes 
in advanced ages, the raw transition probabilities estimated from the optimization step 
were smoothed using the Whittaker-Henderson method (Whittaker, 1922). We selected a 
smoothing parameter (lambda) of λ = 10, which oHered an optimal balance between 
fidelity to the original data and smoothness of the age curve. 
 
 



 10 

Figure 2 The analytical framework of the study. 

 
 
 
4. Results 
 
 

 4.1 Demographic Characteristics and Health State Dynamics 
 
 
 The analysis utilized data from 53,861 respondents in 2021 and 50,578 respondents 
in 2024. After weighting to the national population, as shown in Figure 3, the population for 
both sexes in the Independent state declined significantly across all age groups as cohorts 
aged from 2021 to 2024. In contrast, the Dependent state revealed a distinct gender pattern: 
while the number of dependent males remained relatively stable, the female population 
exhibited a sharp increase in dependency, particularly in the oldest-old age groups. 
 
 The Death estimates confirm a striking gender disparity derived from the cohort 
subtraction method. The red lines in the 2024 death panels indicate the number of deaths 
occurring over the interval. Males exhibited a consistently high number of deaths starting 
from early old age, whereas females showed a lower mortality count that spiked only in the 
most advanced ages. In total, the model estimated approximately 1.55 million deaths 
among males compared to 0.91 million among females, highlighting a pattern of high 
attrition among men. 
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Figure 3 the changes in population counts for each health state among the same birth 
cohorts over the 3-year interval. 

 
 
 
 4.2 Prevalence of Health States 
 
 

 Figure 4 illustrates the age-specific prevalence rates for both sexes, contrasting the 
baseline structure (2021) with the follow-up distribution (2024) that incorporates 
accumulated mortality. The data reveals distinct trajectories of health decline associated 
with aging. At baseline, functional independence predominates across all age groups for 
both sexes. However, the inclusion of estimated mortality in 2024 exposes a critical 
divergence in health outcomes. For males, the aging process is characterized by high 
attrition due to mortality, while the prevalence of dependency remains compressed and 
relatively stable. In contrast, females exhibit a pattern of "survival with disability," where 
lower mortality rates compared to males are offset by a substantial expansion of the 
dependent population, particularly among the oldest-old cohorts. 
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Figure 4 Comparison of age-specific prevalence rates by health state and sex between 2021 
(baseline) and 2024 (follow-up). 

 
 
 
 4.3 Transition Probabilities 
 
 
 The optimization process initially yielded raw age-specific transition probabilities, as 
illustrated in Figure 5. As expected, these raw estimates exhibit noticeable fluctuations, 
particularly among the oldest-old age groups, reflecting the inherent variability associated 
with smaller sample sizes at advanced ages. To mitigate this noise and reveal the underlying 
demographic patterns, Whittaker-Henderson smoothing was applied, resulting in the more 
coherent trends displayed in Figure 6. However, presenting all transition types on a single 
set of axes compresses the visualization of lower-probability transitions (such as 𝑝&	 𝓍34), 
thereby obscuring subtle age-related changes. Consequently, Figure 7 separates these 
transitions into distinct panels with adjusted scales to facilitate a more granular 
examination of gender diHerentials and age trends. 
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Figure 5 Estimated 3-year transition probabilities by age and sex (unsmoothed). 

 
 
 

Figure 6 Smoothed 3-year transition probabilities by age and sex. 

 
 
 

Figure 7 Comparative analysis of smoothed transition probabilities by type of transition. 
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 From Figure 7, The estimated 3-year transition probabilities revealed distinct age 
and sex patterns: 
 

(1) Mortality ( 𝑝&	 𝓍35  and 𝑝&	 𝓍45): The probability of death increased with age for both sexes. 
However, males exhibited a significantly higher probability of dying directly from the 
independent state ( 𝑝&	 𝓍35) compared to females. For instance, in the oldest-old age 
group (81+), 𝑝&	 𝓍35  for males was approximately 0.59, compared to 0.36 for females. 

(2) Disability ( 𝑝&	 𝓍34): Females showed a markedly higher risk of transitioning from 
independence to dependency ( 𝑝&	 𝓍34). While this probability remained low and 
relatively constant for males across all ages (< 0.01), it increased exponentially for 
females, reaching 0.04 in the 81+ age group. 

(3) Retention ( 𝑝&	 𝓍33  and 𝑝&	 𝓍44): Females had a higher probability of remaining in both 
independent and dependent states compared to males, reflecting their lower 
mortality risk but higher morbidity burden. 

 
 Theoretically, the findings confirm the existence of the "morbidity–mortality" paradox 
(Oksuzyan et al., 2008) or "male-female health-survival paradox" (Kulminski et al., 2008) in 
the Thai elderly population. Specifically, the male population exhibits a high probability of 
death from an independent state ( 𝑝&	 𝓍35) but a low probability of entering a dependent state 
( 𝑝&	 𝓍34). In contrast, the female population, despite having a tendency for greater longevity, 
spends a longer duration living in a dependent state ( 𝑝&	 𝓍44). 
 
 
5. Limitation 
 
 
 The model assumes no recovery from disability, which may slightly overestimate 
dependency. Additionally, the analysis relies on the assumption of a closed population 
(zero migration) for the cohort subtraction method, although empirical data suggests 
migration among the Thai elderly is negligible (National Statistical OHice, 2025; NESDC, 
2019). 
 
 

6. The Utility of Transition Probabilities 
 
 
 One of the most concrete ways to utilize probability in demography is to use it to 
estimate future population by health status. Although the results are not shown in this 
paper, the authors provide guidance for the projection using transition probabilities. 
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 Using the smoothed age- and sex-specific transition probabilities collected in 
smoothed transition matrix (𝑇[𝓍,𝓍1']

(+,) ), we can project the number of elderly individuals in 
each health state (Independent, Dependent, Death) from the base year 2024 to 2036 by 
conducting in four consecutive 3-year cycles (i.e., 2027, 2030, 2033, and 2036), as shown in 
Table 3. 
 

Table 3 Timeline of the stepwise 3-year projection cycles (2024–2036). 

Projection Cycle Base Year (𝑡) Result Year (𝑡 + 3) 

1 2024 2027 
2 2027 2030 
3 2030 2033 
4 2033 2036 

 
 
 The projection model relies on the time-homogeneity assumption, implying that the 
transition probabilities estimated for the 2021 – 2024 interval remain constant throughout 
the entire projection period. For each projection cycle, the population vector at time 𝑡 + 3 
is derived from the population at time 𝑡 using the matrix multiplication equation: 
 

𝐾;1&
[𝓍1&,𝓍16] = 𝐾;

[𝓍,𝓍1'] ∙ 𝑇[𝓍,𝓍1']
(+,)  

 
 Where: 

• 𝐾;
[𝓍,𝓍1'] is the row vector representing the number of survivors in each health state 

(Independent, Dependent) and the cumulative number of deaths for a specific age 
cohort at the beginning of the cycle (𝑡). 

• 𝐾;1&
[𝓍1&,𝓍16] is the resulting vector for the same cohort as they age by 3 years. 

 
 However, to solve problem in Figure 8 and to ensure the continuity of the population 
structure across all age groups in every cycle, two specific adjustments have to be 
implemented: 
 

(1) New Entrants (Age 57 – 59): Since the model focuses on the elderly (60+), each new 
projection cycle requires the introduction of a new pre-elderly cohort (aged 57 – 59) 
that will become the 60 – 62 age group in the subsequent period. The total 
population size for this incoming cohort can be obtained from the UN World 
Population Prospects 2024. To categorize them by health state, the observed 
prevalence rates of the 57 – 59 age group from the 2024 baseline can be used by 
assuming that the health profile of new entrants remains constant over time. 
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(2) Open-Ended Age Group (81+): The model defines the final age category as 81 years 
and over. In each projection step, survivors from the 78 – 80 cohort (who become 81 
– 83) and survivors from the existing 81+ cohort (who become 84+) have to be 
aggregated to form the new 81+ population for the next cycle. This aggregation 
ensures compatibility with the dimension of the transition matrix, which is fixed for 
the open-ended age group. 

 

Figure 8 Discrepancy between the fixed estimation scope and the aging cohorts during the 
multi-stage projection process. 

 
 
 
 Moreover, since the transition probabilities are estimated over a 3-year interval, the 
projection model generates population counts in 3-year cycles (e.g., 2027, 2030). For 
applications requiring population estimates for intermediate years (e.g., 2025, 2026), linear 
interpolation between the calculated projection points is a suitable approximation method 
to derive the annual figures. 
 
 
7. Conclusion 
 
 
 Given the limitations of longitudinal data in Thailand, this study developed a Markov 
multi-state model by applying cross-sectional data from the 2021 and 2024 Survey of the 
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Older Persons in Thailand. The main objective was to estimate the 3-year transition 
probabilities between health states—independent, dependent, and death. The estimated 
transition probabilities indicate that stability in both independent and dependent states 
diminishes with age, while the risk of transitioning to dependency or death consistently 
rises, aligning with the natural decline of health. Most notably, the findings confirm the 
"morbidity–mortality paradox" or "male-female health-survival paradox" in Thailand. The 
male population exhibits high mortality rates directly from the independent state but a low 
risk of becoming dependent. Conversely, the female population demonstrates greater 
longevity but spends a significantly longer duration in a dependent state. Moreover, to 
demonstrate the application of these estimates, the study also provided a calculation 
method for projecting the elderly population classified by health status from 2024 to 2036. 
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