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Abstract

Understanding the economic, social, and cultural consequences of declining fertility rates requires
high-quality fertility data over long periods of time and at fine geographic scales. This is a challenging
task as at subnational levels, small population counts lead to high stochasticity; consequently, zero
birth observations are a frequent occurrence. In this paper, we propose a principal component-based
Bayesian spatiotemporal model to estimate age-specific fertility rates in small subnational areas. The
model exploits structural patterns in fertility through the principal components, and stabilizes estimation
by pooling information on the local manifestation of these patterns in space and time. We apply our
model to county-level fertility data from California for 1982-2022 to estimate age-specific fertility rates
and downstream fertility indicators. The model appears to perform well in these initial experiments and
we identify several interesting patterns in Californian fertility for further study.

1 Introduction

Recent decades have seen consistent declines in fertility in most countries across the globe. Highly industri-
alized countries in particular are experiencing fertility rates well below the replacement level of 2.1 children
per woman. The United States was an outlier for many years, maintaining higher fertility relative to peer
countries, though it too has experienced sharp declines over the past 15 years, reaching a record low of 1.6
in 2023 (National Center for Health Statistics, 2024).

Despite the unprecedented nature of this phenomenon, in the United States context, relatively little
research has been conducted studying the causes and consequences of low fertility. Yet the importance of
this research is quite clear: studies of European and East Asian experiences have found that changes in the
demographic structure triggered by low fertility have far-reaching consequences ranging from instability in
social services to challenging economic environments due to a shrinking labour force (see for example Bloom
et al. 2008). One of the primary barriers impeding research in this area has been the lack of high-quality
easily accessible fertility data extending over long enough time periods to study trends, and disaggregated at
small enough geographic levels to study differential patterns by social, policy, economic, or other contexts.

In this abstract, we propose a method to produce small-area fertility estimates in order to fill this gap.
In small populations, classical demographic methods cannot be used due to high stochasticity in observed
demographic counts. We thus propose a new principal component-based Bayesian spatiotemporal model to
estimate age-specific fertility rates for all counties in the United States for the years 1982-2022. The model
stabilizes estimation in small populations through two mechanisms. First, we exploit the fact that there
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are known regularities in fertility schedules (Schmertmann et al., 2014). We extract such patterns from
aggregate large population reference data for use as building blocks when constructing small population
fertility curves. This approach has seen much success in subnational mortality rate estimation (Alexander
et al., 2017; Dharamshi et al., 2024). We then introduce spatiotemporal structures that allow information
to be shared across space and time in recognition of the fact that fertility patterns are expected to change
gradually along these dimensions.

The estimates produced by our model will form the first complete series of county-level age-specific
fertility rates in the United States. These results will be made freely available as part of the new United
States Fertility Database (USFDB), and will be a useful resource for the demographic community to answer
pressing questions regarding the future of fertility in the United States.

2 Data

The proposed model is applied to official county-level birth and population statistics (National Center for
Health Statistics, 2024; Census Bureau, 2024). The birth data are processed from the restricted-use Natality
files published by the National Center for Health Statistics (NCHS) at the Centers for Disease Control which
we have obtained through a Data User Agreement (DUA). The DUA was necessary because the publicly
available files do not include information on the mother’s county of residence. The Natality files include
individual birth records for all births that occurred in the United States. From these, we tabulate births
by calendar year (1982-2022), sex, and age of the mother in the 5-year groups. The birth tabulations are
then combined with the annual female population estimates by county, sex, and age group published by the
Census Bureau to calculate all fertility indicators.

3 Methods

3.1 Principal components

Principal component models have enjoyed much success in demographic modelling as they offer a means
of capturing the strong regularities observed in age-specific demographic rates across varying populations
(Alexander et al., 2017; Dharamshi et al., 2024).

This approach begins with a matrix of large population log-fertility curves, X, and computes the singular
value decomposition X = UΣV′ where U is the matrix of left singular vectors, Σ is the diagonal matrix of
singular values, and V is the matrix of right singular vectors, which we refer to as “principal components”.
The principal components capture structural patterns in log-fertility over age.

The first three principal components derived from United States state-level log-fertility data are given
in Figure 1. The first principal component captures the characteristic inverted-“U” shape of log-fertility,
where fertility is generally the highest between ages 20 and 35. The second and third principal components
represent changes in the shape of the base fertility curve, allowing for delayed childbearing (PC2) and
increased concentration around peak ages (PC3).

Equipped with these foundational patterns, we can build models that target the contribution of each
principal component in each location and time point of interest rather than the age-specific fertility rates
directly. This efficient use of demographic knowledge dramatically reduces the number of parameters that
must be estimated, leading to more precise final estimates.

3.2 Model overview

We begin by introducing the notation for our model. Let Ba,c,t and Pa,c,t denote the number of births
and the population of women observed in age group a, county c, and year t. Then, let λa,c,t denote the
corresponding fertility rate. This is our target of inference. We assume a Poisson model for these quantities:

Ba,c,t ∼ Poisson(Pa,c,tλa,c,t).
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Figure 1: The panels plot the first through third principal components extracted from the singular value
decomposition of the state-level log-fertility matrix.

As discussed, our latent model for the fertility rates is constructed on the log-scale using the principal
components derived from aggregate state-level data. Specifically,

log λa,c,t =
3∑

j=1

βj,c,tVj,a

where Vj,· is the jth principal component and βj,c,t are the county-year specific coefficients to be estimated.
Intuitively, this model constructs log-fertility curves as linear combinations of established fertility patterns
encoded by the principal components. Our task is then to estimate the contribution of each component.

The number of principal components included is an important decision in principal component regression
models. Here we use the three plotted in Figure 1 as they represent over 99% of the variation in log-mortality
rates though we intend to investigate sensitivity to this decision in the full paper.

3.3 Spatiotemporal smoothing

In practice, estimating the βj,c,t coefficients independently for each county-year is not practical as the small
birth and population counts observed in some counties will lead to imprecise estimates. We thus propose
a spatiotemporal model that borrows strength across space and time to stabilize estimation of the log-
fertility rates. This model is not, however, assigned to the log-fertility rates themselves. Rather, we build
a spatiotemporal model for each of the three collections of βj,c,t terms. This serves two purposes: 1. we
expect that spatiotemporal dependence in age-specific log-fertility rates are a consequence of spatiotemporal
dependence in the high-level patterns captured by the principal components and therefore our proposed model
targets the underlying mechanism at play, and 2. from a practical perspective, attempting to alternatively
construct one unified age-space-time process is not a computationally practical endeavour.

Formally, our proposed model decomposes βj,c,t into the sum of several terms:

βj,c,t = µj + αj(t) + ωj(c) + δj(c, t),

where µj is the overall mean for the jth principal component coefficients, αj(t) is the temporal component,
ωj(c) is the spatial component, and δj(c, t) is the spatiotemporal interaction term. The first terms, µj , are
specified as fixed effects on the principal component vectors. For the temporal, spatial, and spatiotemporal
terms, we consider the Type III Knorr-Held random effect model (Knorr-Held, 2000; Blangiardo et al., 2013;
Blangiardo and Cameletti, 2015). This model assumes that both the temporal components, αj(t), and spatial
components, ωj(c), decompose into the sum of two terms: a structured model and unstructured Gaussian
noise. For αj(t), we take the structured term to be a random walk 2 to promote gradual changes in the
overall time trend. For ωj(c), we model both terms together using the BYM2 parameterization of Riebler
et al. (2016) where the structured spatial term is an areal random effect where neighbours are defined by
counties that share a border, allowing for local information pooling. Finally δj(c,t) is defined as an interaction
between the unstructured temporal term and the structured spatial term which can be intuitively understood
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as allowing an independent perturbation to the structured spatial field in ωj(c) at each time point (for further
technical details see Knorr-Held 2000). This interaction allows the model to adapt the spatial field as county
interrelationships evolve over time.

We conclude by noting that unlike pure hierarchical specifications (such as those used in Alexander et al.
(2017) and Dharamshi et al. (2024)), our proposed spatiotemporal model is less susceptible to overreliance
on large urban centres to determine patterns, and instead draws on local strength through the spatial terms.
We intend on performing a comprehensive comparison between our proposed spatiotemporal model and a
simpler hierarchical model in the full paper.

3.4 Computation

The proposed model is fit using the integrated nested Laplace approximation (INLA) method, implemented
in the INLA R package, using the default INLA priors for all parameters (Rue et al., 2009). For inference on
downstream functions of the log-fertility rates, we generate 1,000 samples of the linear predictors from the
approximate posterior distribution.

4 Results

We apply our proposed model to the births and population data described in Section 2 subset to Californian
counties to estimate fertility rates in each county-year-age group for the period of 1982-2022. We focus our
attention here on California as its counties act as a microcosm of the United States as a whole, and will study
the entire country in the full paper. At this time, we note that county-year-age group observations with
between one and nine births, representing approximately 22% of the data, have been censored to protect
privacy, though we will gain access to this data through our DUA in the near future.

To illustrate the output of the model, in Figure 2 we select three counties of varying population sizes and
plot the observed and estimated fertility rates for five evenly spaced years. Observed data are given by the
black points, posterior median estimates are given by the blue line, and 90% credible intervals are given by
the blue bands. County names are suppressed in order to comply with our data agreement.

Figure 2 offers several interesting substantive and methodological insights. On the former, we see the
increase in fertility from 1982 to 1992 followed by sharp declines in subsequent decades. We also see that the
two smaller counties have higher and earlier fertility than the large urban county. Regarding the timing of
fertility, we note that the deferral in fertility to later ages is on full display in the large county: the estimated
fertility curves for 1982 and 1992 peak in the 20-24 and 25-29 age groups whereas they peak in the 30-34
age group in 2012 and 2022. Methodologically, we see that as expected, our estimates are more uncertain
the smaller the county, though we comment that the intervals are not prohibitively large. We note that in
2022, the estimated curve for the large county does not track the observed data exactly despite the large
population. We plan to investigate this further and explore whether the model requires additional allowances
for overdispersion in log-fertility beyond the principal components.

In Figure 3, we plot maps of our estimates of the total fertility rate for all of California for the same
set of years as in Figure 2. The first row displays the median posterior point estimates and the second row
displays the posterior standard deviations. Similar patterns emerge in the total fertility rate: there is a clear
increase in total fertility in the first decade under study followed by a sharp decline in subsequent years.
Interesting spatial patterns can be seen in the maps. The interior and eastern regions generally have higher
fertility though the gap narrows in more recent years. We comment that one county in the east-central
region has persistently low total fertility. An investigation into the data reveals that the observed data are
all zero births - all other observations have been censored. After we gain access to the full data, we plan to
investigate how the estimates for this county change.

Turning to the second row of Figure 3, we note that the standard deviations are generally quite small
though some of the smaller eastern counties do have elevated standard errors as expected. Most interesting is
the northeastern-most county which has consistently elevated standard deviations. We intend to investigate
this county further and understand whether this is a function of the population size or the fact that as a
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Figure 2: Three examples of county-level fertility rate plots by county-year three counties of varying popu-
lations. The black dots represent observed values, and the blue lines and regions indicate posterior medians
and 90% credible intervals respectively

border community there is limited opportunities for sharing information across space. It will be interesting
to explore whether extending to all US counties will improve the precision of this county’s estimates.

Figure 3: Maps of posterior median estimates of total fertility rates and corresponding standard deviations
overlaid with county borders.
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5 Discussion

In this abstract, we have proposed a new model for estimating subnational fertility rates. The model
combines the parsimony of principal component models with the flexibility of spatiotemporal models such
that established fertility patterns are respected while still allowing for local variability. Our initial application
of the model to California’s fertility data has led to promising results. In the main paper, we intend to further
refine our model by conducting comprehensive model validation exercises where we compare it against several
simpler (and perhaps a couple of slightly more flexible) alternatives on both simulated and real data. We
then intend to apply the final model to the entire United States as a whole and study the resulting fertility
rate estimates in detail.
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