
On the use of Kannisto model

for mortality trajectory modelling at very old ages

Linh Hoang Khanh Dang1, Carlo Giovanni Camarda2, Nadine Ouellette3, and France Meslé2
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Abstract

The Kannisto model is one of the most widely used parametric models for old-age mortality

estimation. The model finds extensive use in life tables calculations, such as in the Human Mor-

tality Database (HMD, 2023) for old-age mortality smoothing, and in pension and annuity policy

planning. However, recent concerns have arisen regarding the accuracy of this model for model-

ing mortality patterns at advanced ages (Feehan, 2018). We explore the question further using

thorough age-validated mortality data for France, Belgium and Quebec (Canada), where a large

number of extinct birth cohorts were followed up to age 115. Our comparison of the Kannisto

model’s performance with other frequently used mathematical mortality models showed a system-

atic underestimation of death rates for the Kannisto model, which becomes apparent as early as

circa age 100 in all populations studied, for both males and females. This systematic underestima-

tion in mortality would translate in a systematic overestimation of life expectancy that becomes

noticeable after age 100. Caution is thereby advised when using the Kannisto model to estimate

mortality at very old ages.

Introduction

To model mortality data, parametric models have long been the standard approach, with broad

usage. Among these, the Kannisto model is one of the most popular models to date. Introduced

to the scientific community for the first time in June 1992 by Väinö Kannisto at a workshop on

old-age mortality at the University of Southern Denmark in Odense (Kannisto, 1992), the simplified

logistic model, which later became known as the Kannisto model, has long stood as perhaps the most

prominent model for estimating the age trajectory of mortality at very old ages. Capable of capturing

the decelerating trend in the force of mortality,— a characteristic for which the family of logistic

models is most renowned,— the fact that the Kannisto model does so with only two parameters

instead of three earned it the endorsement of researchers in the field of mortality studies. This model

found extensive application in several major practical frameworks, including in the development of life

tables in the Human Mortality Database (HMD, 2023), and also in that of pensioners and annuitant

groups both in public and private sectors. However, more recently, evidence has emerged highlighting

the need for caution when using the Kannisto model (Feehan, 2018). With continuous increase of

life expectancy, especially in low-mortality countries, it is only sensible to expect growing number of

survivors to these oldest ages (Global Burden Disease Forecast, 2024). Modeling accurately the force

of mortality at these ages using appropriate models therefore becomes ever more an urgent necessity

than pure scientific curiosity.
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In this paper, we investigate the performance of Kannisto model further by comparing it to that

of frequently used models for depicting the trajectory of mortality at the most advanced ages. We

use a set of mortality data for three populations where all birth cohorts were followed until the age

of 115 or higher, rather than being limited to much younger old ages that previous study done by

Feehan (2018) was constrained to due to the availability of data. Moreover, the data we use is subject

to a thoroughly age validation protocol that meets the highest criteria from International Database

on Longevity (2023) as described in the next section.

Data

The data that we use in this study come from three populations, namely France, Belgium, and

Quebec (Canada). The historical depth of mortality data collected in these populations allow us to

study extinct birth cohorts, and also to apply a strict age validation process adapted to the specific

characteristics of each population. This protocol guarantees two key features making these mortality

data at oldest ages highly reliable: the data on deaths are exhaustive and as accurate as can be

according to the information available in each country. The data and their sources are presented in

the table 1. We compute aggregated number of deaths by country/region, sex, age, year of birth, and

year of death. The exhaustive lists of individual deaths from which our aggregation death counts come

from include information about the sex, date of birth and date of death of all deceased individuals.

We model mortality starting from age 90, and while these data are deemed confidential and were

obtained under strict protocol, an anonymized version of these data for ages 105 and above is publicly

available in the International Database on Longevity (IDL, 2023), free of charge after registration.

Table 1: Description of the mortality data for French, Belgian and Quebec populations

Description France Belgium Quebec

Source of data

Institut national

de la statistique

et des études économiques

Registre national
Institut de la statistique

du Québec

Type of data Aggregated Individual Individual Individual

Total death count

(all sexes

and ages combined)

1,028,208 140,990 31,794

Completed ages at death 90–104 105+ 90+ 90+

Birth cohorts 1883–1901 1891–1904 1880–1896

Years of death 1973–2016 1981–2015 1970–2009

Methods

Selected mortality models

The Kannisto model belongs to the family of logistic models that were proposed firstly by Perks in

1932 and further developed and put into practice by Beard (1952, 1971). Similarly to all functions

belonging to this family, the Kannisto model is characterized by two main features. The first is

the existence of an inflection point, after which the rate of increase of mortality could change, by

starting to slow down. This phenomenon is known as old-age mortality deceleration. The second
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inherent mathematical property of the Kannisto model is the existence of a horizontal asymptote,

often interpreted in the literature as the mortality plateau. As opposed to other models belonging

to the logistic family that have an asymptote at a level that varies depending on data, the Kannisto

model has a fixed asymptote at unity. The mathematical expression describing the Kannisto model

is given by

µ(x) =
a eb x

1 + a eb x
,

where µ(x) is the force of mortality expressed in function of age x. In this paper, we compare

the performance of the Kannisto model by comparing it to several competing models which are

the other most widely used ones for modelling mortality at very old ages : the Gompertz model

(Gompertz, 1825), the Weibull model (Weibull, 1951), the log-quadratic model (Coale and Kisker,

1990), and another model that belongs to the logistic family — the Beard model (Beard, 1952). These

models describe the most frequent scenarios for the trajectory of mortality at the highest ages which

are, respectively, an exponential growth of mortality, a linear growth, a potential decrease, and a

deceleration of mortality with an horizontal asymptote to be estimated from the data. Figure 1 gives

an overview of these various scenarios.

Figure 1: Scenarios of mortality trajectory at highest ages and their corresponding possible mortality

models
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The mathematical expressions for fitting the four models to be compared with the Kannisto model,

based on observed data, are the following:

Gompertz model: µ(x) = a eb x,

Weibull model: µ(x) = axb,

log-quadratic model: µ(x) = exp(ax2 + bx+ c),

Beard model: µ(x) =
a exp(bx)

1 + δ exp(bx)
,
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where the horizontal asymptote δ/a in the Beard model is to estimated from the data.

Fitting the models to empirical mortality data

We assume that the death counts are realizations of a Poisson distribution, namely

Dx ∼ P(µx(θ)Ex),

where Dx is the number of deaths observed at each age x, µx is the force of mortality at age x, and

Ex is the exposure-to-risk, also at age x. We fitted the selected models to our age verified empirical

data using the method of maximum of likelihood, where the likelihood function to be maximized is

given by

ℓ(θ|Dx, Ex) ∝
ω∑

x=x0

(Dx lnµx(θ)− µx(θ)Ex) .

It should be mentioned that for no reason other than plain numerical challenges during the fitting

process, the log-quadratic model was fitted to data using a generalized linear model (GLM) approach,

while other models were fitted through the method of maximum likelihood. These two routines

provided similar estimations for our model parameters and similar estimated forces of mortality at

each age. As a precaution, we used deviance residuals for computing the AIC by applying the following

formula

AIC = Dev + 2m,

where m is the number of parameters included in the model, and Dev is the deviance residuals given

by

Dev = 2const− 2 lnL(proposedmodel|data),

where lnL(proposedmodel|data) is the value of the log-likelihood of the given model estimated for

each data set. With this alternative approach, the rule is still such that the smaller AIC yields the

better performing model.

Results

Visual inspection

Figures 2, 3, 4, and 5 show the sex-specific observed death rates and the fitted curves according to

the selected mortality models, respectively in French, Belgian, and Quebec populations, in addition

to all three populations pooled together. In all female data sets, the Kannisto model systematically

provides the lowest estimates of mortality above age 100 compared to other models. That remains

true even when it is compared to the Beard model that also has the ability to accommodate for a

mortality plateau at very old ages and the log-quadratic model that allows for an even wider amount

of flexibility. In male populations, not only does the Kannisto model result in the lowest mortality

estimates at the highest ages, but it becomes very apparent that it no longer fits observed male death

rates well at the highest ages. For both sexes, the Kannisto curves seem to bend prematurely and

are positioned far lower compared to its logistic model counterpart (i.e. the Beard model) and the

log-quadratic model.

Interestingly, it is also noticeable that in most Figures 2–5, the Kannisto-fitted curves lie well
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above the dotted horizontal line, placed at a level of 0.7 for the force of mortality, which is often cited

in the literature as the level of the human mortality plateau. Further work,— beyond the scope of the

current paper,– is needed to verify this observation. However, this could suggests that if the plateau

of mortality exists at extreme ages, its level must be higher than 0.7.

Figure 2: Fitted force of mortality (with 95% CIs), French female (left) and male (right) populations,
birth cohorts 1883–1901

Figure 3: Fitted force of mortality (with 95% CIs), Belgian female (left) and male (right) populations,
birth cohorts 1891–1904
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Figure 4: Fitted force of mortality (with 95% CIs), Quebec female (left) and male (right) populations,

birth cohorts 1880-1896

Figure 5: Fitted force of mortality (with 95% CIs), pooled female (left) and male (right) populations,

birth cohorts 1880-1904
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Analytical results

The tables 2 and 3 give the AIC values for each model in each data set, respectively for female and for

male populations. For both sexes, even if the optimal model changes according to the population, the

Kannisto model does not qualify as the optimal model in any of our data sets. For female populations,

when the number of observations is considerably reduced, such as in the cases of Quebec and to a

lesser extent Belgian populations, the Kannisto model performs the worst. Among males, the Kannisto

model also exhibits the poorest performance, except for the Quebec population. There is more than

just the number of observations to consider when it comes to the performance of a regression model,

but the fact that the Kannisto model does not perform particularly well in any of our data sets, which

are made of the most recent and high quality mortality data currently available. This could decidedly

give way for concern, especially given that the Kannisto model has been serving as a widely used

standard to estimate the age trajectory of mortality at very old ages.

There are several reasons for the poor performance of the Kannisto model on the data included

in this study. Among them, fixing an horizontal asymptote at unity for the force of mortality might

be still too low for the current mortality trends at the highest ages. And even if mortality deceleration

at the population scale is the true underlying pattern at very old ages, for the time being, human

mortality seems to continue increasing at a greater pace than what is implied to reach a plateau

at unity. This observation could be counted as one additional material to re-consider whether the

mortality plateau, assuming it exists, would be only around 0.7 as it has been suggested by several

earlier studies (Gampe, 2010, 2021; Rau et al., 2017).

Table 2: Mortality model rankings according to AIC, France, Belgium, Quebec and pooled female
populations

Mortality

model

France

(c.1883-1901)

Belgium

(c.1891-1904)

Québec

(c.1880-1896)

Pooled

(c.1880-1904)

∆AIC Rank ∆AIC Rank ∆AIC Rank ∆AIC Rank

Gompertz 158.53 5 6.09 4 0.00 1 172.03 4

Weibull 97.33 4 1.99 3 2.64 4 92.16 5

Kannisto 15.58 2 9.35 5 2.81 5 25.73 3

Beard 37.31 3 1.07 2 1.59 2 0.00 1

Log-quadratic 0.00 1 0.00 1 1.63 3 2.29 2
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Table 3: Mortality model rankings according to AIC, France, Belgium, Quebec and pooled male
populations

Mortality

model

France

(c.1883-1901)

Belgium

(c.1891-1904)

Québec

(c.1880-1896)

Pooled

(c.1880-1904)

∆AIC Rank ∆AIC Rank ∆AIC Rank ∆AIC Rank

Gompertz 0.00 1 0.01 2 0.23 2 0.00 1

Weibull 6.49 4 2.69 3 0.03 1 7.67 3

Kannisto 63.04 5 17.52 5 1.16 3 75.24 5

Beard 5.57 3 3.33 4 2.56 5 34.91 4

Log-quadratic 1.32 2 0.00 1 2.01 4 1.27 2

Going one step further, the age at which the Kannisto model starts to diverge from its competing

mortality models could be an useful information, namely for practitioners’ involved in the decision

making of which mortality model to use for modeling mortality at the highest ages, given their study

population and their question(s) at hand. One straightforward way to do so is to estimate the age

at which the mortality estimates from the Kannisto model differ statistically from those estimated

by other models. Herein, using model-specific 95% confidence intervals, we can estimate the age at

which the upper band of the confidence interval band of the alternative model no longer includes

the Kannisto fitted values. Tables 4 and 5 report the various ages of separation for the Kannisto

model with respect to the other selected models, respectively for pooled female and male populations.

Compared to the optimal models that were selected earlier by AIC (i.e., Beard model for females

and Gompertz model for males), the separation started as early as at age of 101.51 for the first case

and 99.33 for the later, and the underestimation seems to become ever more apparent with further

advanced ages. With respect to all of the alternative models, the separation ages are between 100–102

years old for females and 99–101 for males, suggesting that caution is advised as early as when ages

of centenarians are reached.

Table 4: Comparison between the Kannisto model and selected competing models using ∆AIC, and
estimated age of separation, pooled female population, birth cohorts 1880–1904

Model Competing models Age of separation

Gompertz 100,23

Weibull 103,73

Beard 101,51
Kannisto

Log-quadratic 101,82

Note: The Beard model marked in bold is the optimal model according to AIC for pooled female population

(see Table 2).
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Table 5: Comparison between the Kannisto model and selected competing models using ∆AIC, and
estimated age of separation, pooled male population, birth cohorts 1880–1904

Model Competing models Age of separation

Gompertz 99.23

Weibull 99.55

Beard 101.23
Kannisto

Log-quadratic 99.25

Note: The Gompertz model marked in bold is the optimal model according to AIC for pooled male

population (see Table 3).

Tables 6 and 7 report estimated life expectancy at different given ages using each model under

study. As what was informed by the ages of separation between Kannisto model and competing

models, there is almost no difference between estimated life expectancy from age 0 to 85 between

competing models. However, starting around age 100, the gap between estimations starts to show.

Kannisto model gives an estimation that is visibly higher than not only models that predict a con-

tinuous exponential growth of mortality like Gompertz model or model of weaker deceleration like

Weibull model, but it is also higher than model of the same logistic family like Beard model and

model that could predict even a diminution of mortality at highest ages like log-quadratic model.

Precisely, Kannisto model overestimates the life expectancy at age for females by 0.06 and 0.10 at age

110 (compared to log-quadratic model). For males, this overestimation is of 0.23 at age 100 and 0.38

at age 110 (compared to optimal model: Gompertz model). This overestimation of life expectancy

above age 100 is the direct consequence of Kannisto model systematically underestimating mortality

at these higher ages.

Table 6: Life expectancy estimated at different ages by all models under study, French females, birth
cohorts 1883-1901

Gompertz Weibull Kannisto Beard Log-quadratic

e0 52.55759 52.5573 52.55776 52.5577 52.55769

e65 16.7745 16.77394 16.77484 16.77471 16.77471

e85 5.60777 5.60626 5.60869 5.60834 5.60834

e100 1.50902 1.59363 1.72207 1.66152 1.64854

e110 1.05667 1.17824 1.43269 1.33396 1.29834

Table 7: Life expectancy estimated at different ages by all models under study, French males, birth
cohorts 1883-1901

Gompertz Weibull Kannisto Beard Log-quadratic

e0 42.01528 42.0153 42.0153 42.01529 42.01529

e65 13.1234 13.12343 13.12345 13.12342 13.12341

e85 4.56961 4.56975 4.56982 4.5697 4.56967

e100 1.35834 1.40645 1.58747 1.35992 1.33689

e110 0.96342 1.04136 1.34675 0.96687 0.92852
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Conclusion

Based on the most recent thoroughly age-validated data for extinct birth cohorts from France, Belgium

and Quebec (Canada), our results indicate that the well known and widely used Kannisto model

systematically underestimates mortality at the oldest ages. The higher the ages, the more apparent it

becomes that the mortality deceleration resulting from the Kannisto model is greater than suggested

by empirical data. The underestimation seems to start as early as age 101 for females and 99 for

males. The horizontal asymptote fixed at unity forces the mortality curve to bend prematurely and

does not depict the trajectory of mortality at the highest ages as accurately as the Beard model –

another model belonging to the logistic family. The use of the Kannisto model for estimating old-

age mortality trajectories should therefore be made with great precaution. Other competing models,

such as the Beard model or the log-quadratic model, appear as the most appropriate candidates for

substitution.
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