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Abstract
A novel fertility model based on Thom’s nonlinear differential equations of morphogenesis is
presented, utilizing a three-dimensional catastrophe surface to capture the interaction between
latent non-catastrophic fertility factors and catastrophic shocks. The model incorporates key
socioeconomic and environmental variables and is applicable at macro-, meso-, and micro-
demographic levels, addressing global fertility declines, regional population disparities, and
micro-level phenomena such as teenage pregnancies. This approach enables a comprehensive
analysis of reproductive health at aggregate, sub-national, and age-group-specific levels. An
agent-based model for teenage pregnancy is described to illustrate how latent factors—such
as education, contraceptive use, and parental guidance—interact with catastrophic shocks like
socioeconomic deprivation, violence, and substance abuse. The bifurcation set analysis shows
how minor shifts in socioeconomic conditions can lead to significant changes in fertility rates,
revealing critical points in fertility transitions. By integrating Thom’s morphogenesis equations
with traditional fertility theory, this paper proposes a groundbreaking approach to understanding
fertility dynamics, offering valuable insights for the development of public health policies that
address both stable fertility patterns and abrupt demographic shifts.
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1. Introduction
The global decline in fertility rates is a demographic shift with profound implications for
social systems and economies worldwide. This decline, driven by factors such as rising
levels of female education, economic development, urbanization, and improved living
standards, presents challenges in countries like Japan and South Korea, where fertility rates
have fallen well below replacement levels. While the characterization of these declines as
catastrophic varies depending on the context, their impact on aging populations and labor
force contraction is widely acknowledged.

In many societies, shifts in values and attitudes toward family size, delays in marriage,
and increased gender equality have contributed to these changes. Moreover, advances in
healthcare and reductions in child mortality have further altered fertility patterns. These
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factors interact in complex ways, and their relative importance varies across regions, un-
derscoring the need for a nuanced understanding of fertility dynamics to inform policy
interventions.

Historically, mathematical models of fertility have focused on estimating fertility rates
(Brass 1975), forecasting trends (Lutz, Vaupel, and Ahlburg 1999; Lee and Carter 1992),
analyzing the quantum and tempo of fertility (Bongaarts and Feeney 1998), and modeling
age-specific fertility patterns (Asili, Rezaei, and Najjar 2014; Gaire, Thapa, and K. C. 2022).
This study proposes a novel fertility model based on Thom’s nonlinear differential equations
of morphogenesis. The model integrates traditional fertility factors with catastrophic
socioeconomic and environmental shocks that influence pregnancy rates and, on a larger
scale, fertility outcomes. In the fertility catastrophe model, the system states are influenced by
control parameters that can induce abrupt changes in fertility outcomes. These parameters
govern the transition from stable fertility trends to sudden, discontinuous shifts in fertility
patterns.

Of particular interest in the model are the bifurcation parameters, which determine
the discontinuities in the fertility response surface. When these parameters exceed certain
thresholds, they may trigger catastrophic events, resulting in marked decreases or increases
in pregnancy rates. The estimation and testing of these parameters provide critical insights
into the occurrence and impact of catastrophic fertility events. Importantly, the model
accounts for both negative and positive fertility shocks, allowing for the examination of
population declines as well as potential booms. A thorough understanding of these events
can assist policymakers in preparing for demographic shifts, facilitating more robust public
health planning and policy responses.

Next section describes the nonlinear fertility catastrophe model and Section 3 shows an
application of the nonlinear fertility catastrophe model based on agent based mathematical
model of teenage pregnancy. Section 4 discusses potential applications and Section 5
concludes. The Python code to replicate the results of the simulations of the cusp catastrophe-
agent based model of teenage pregnancy is in the appendix at the end of this document.

The next section outlines the nonlinear fertility catastrophe model in detail. Section 3
shows its application within an agent-based mathematical framework for modeling teenage
pregnancy. In Section 4, other potential applications of the model are discussed, and Section
5 provides concluding observations. The Python code used to replicate the simulation results
for the cusp catastrophe-agent based model of teenage pregnancy is included in the appendix
at the end of this document.

2. A Nonlinear Fertility Catastrophe Model
The fertility catastrophe model is based on the fold function proposed by Thom (1972). In
the fold function, the states s of FΨ(s) are defined by the variables ξ and the parameters Ψ,
hence FΨ(s) := F(ξ,Ψ) in the cusp model, and the function F(ξ,Ψ) is equal to:

F(ξ,Ψ) = ψ1ξ
4 –ψ2ξ

2 +ψ3ξ (1)

In equation 1, the variable ξ represents the state of the dynamical system, while the
control parameters Ψ = {ψ1,ψ2,ψ3} influence the dynamics of the system. Changes in
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latent control parameters Ψ give rise to various geometric forms in the state variable ξ. These
control parameters capture the dynamic changes of a system from a stable state to a sudden
catastrophic situation, as discussed in Renfrew (1978) and Saunders (1980). The derivative
with respect to the time of the states ξ gives rise to the deterministic dynamical equation:

∂ξ

∂t
= –
∂V(ξ;α,β)

∂ξ
(2)

In equation 2, the changes of ξ across time t are captured by the function V(ξ;α,β), hence
the function V(ξ;α,β) is a time-dependent version of the fold function F(ξ,Ψ) in equation
1, with the control parameters in the original model of Equation 1 now equal to ψ1 = 1/4,
ψ2 = 1/2β, ψ3 = –α:

–V(ξ;α,β) = αξ +
1
2
βξ2 –

1
4
ξ4, (3)

In the function V(ξ;α,β) the control parameters α and β affect the dynamics of ξ. The
equilibrium points are a function of the control parameters α and β and are the result of
solutions to equation α+βξ–ξ3 = 0, which is equal to the Cardan discriminant δ = 27α–4β3

(Grasman, Maas, and Wagenmakers 2010). Cardan’s discriminant differentiates between
unimodal (δ ≤ 0) and bimodal cases (δ > 0).

Equation 1 is a dynamic deterministic equation that serves as the foundation of the
catastrophe model. However, to account for the inherent unpredictability of real-world
fertility scenarios, a stochastic component is incorporated into this deterministic equation.
This enhancement enables the estimation of a catastrophe function using real population
data. By combining deterministic and stochastic elements, the dynamical system becomes
more comprehensive and better suited for capturing the complexities of real-world fertility
scenarios.

The deterministic model 3 can be extended to represent a stochastic process if a Wiener
white noise term dW(t), associated with a Gaussian probability distribution with a variance
σ2, is added to –∂V(ξ;α,β)/∂ξ to obtain the stochastic differential equation:

dξ = –
∂V(ξ;α,β)

∂ξ
dt + dW(t). (4)

Figure 1 (right) shows combinations of values of the control parameters α and β. The
curves in the plane represent the distribution of the number of pregnancies ξ for different
values of the control parameters. Unimodality and bimodality of the number of pregnancies
ξ is observed for different values of α and β. The parameter α ∈ R controls the asymmetry
of the number of pregnancies, in the sense that positive values of α indicate an asymmetry
of the distribution towards a non-crisis reproductive environment (α→ ∞+). In contrast,
negative values of α indicate an asymmetry of the distribution towards a reproductive crisis
(α→ ∞–). The parameter β ∈ R is a bifurcation parameter that switches the number of
pregnancies between a reproductive crisis (β → ∞–) and a catastrophic state of fertility
(β→ ∞+) caused by a catastrophic event. A non-catastrophic state (β < 0) is a state of low
fertility. In contrast, when β→ ∞+, the model captures the impact of catastrophic events,
which cause severe, unstable, and catastrophic fertility conditions (Figure 1, right).
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Figure 1. Left: Response surface of the fertility model based on catastrophic morphogenesis. The model takes
into account the effects of X traditional fertility factors, as well as catastrophic shocks (Z). Right: state-space
of control parameters of the model: α and β.

Of particular interest are the values of β ∈ R0,∞+, which control the discontinuities in
the response surface of the number of pregnancies. Since the values of β > 0 are related to
catastrophic events, estimating the catastrophe model and testing the statistical significance
of the parameters α and β is equivalent to empirically testing the presence of fertility
catastrophic events.

The form of the probability density function of ξ for stochastic catastrophe models
(Equation 5 below) was developed by Cobb (1978, 1981), Cobb, Koppstein, and Chen (1983),
Cobb and Zacks (1985), and Cobb (2010) as a multimodal generalization of distributions
belonging to the exponential family, without relying on mixture densities (Cobb, Koppstein,
and Chen 1983):

f (ξ;α,β, λ,σ) =
ϕ

σ2 exp

(
α(ξ – λ) + 1

2β(ξ – λ)2 – 1
4 (ξ – λ)4

σ2

)
(5)

In Equation 5, λ andσ are the location and scale parameters of the state variable ξ, respectively,
and ϕ is a constant that normalizes the p.d.f. so that it has a unit integral over the range
R (Cobb 1981). Estimates of the parameters of interest α and β can be obtained with
information on the number of pregnancies on the basis of the maximum likelihood approach
of Cobb and Zacks (1985) augmented with the subspace fitting method of Oliva et al. (1987),
in which ξ is a canonical variable that results from a first-order polynomial approximation of
measured dependent variables. Specifically, let Y = [1 | (Yi)], X = [1 | (Xj)], Z = [1 | (Zk)],
and w = (ω0,ω1, . . . ,ωp)′, a = (a0, a1, . . . , aq)′, b = (b0, b1, . . . , br)′. In this notation, Y, X,
and Z are vectors that contain stochastic dynamics variables Y1, Y2, . . . , Yp, X1, X2, . . . , Xq,
and Z1, Z2, . . . , Zr, respectively, and 1 is a vector of ones concatenated in the matrices Y,
X, and Z. Given this matrix notation:

ξ = Yw, α = Xa, β = Zb, (6)
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the optimization of the log-likelihood function,

ℓ (a, b,w;Y,X) =
∑
i∈D

logϕi –
∑
i∈D

(
αiξi +

1
2
βiξ

2
i –

1
4
ξ4

i ,
)

(7)

with data D (i ∈ D), provides estimates concerning the variables that explain the number of
pregnancies during a fertility crisis and amidst fertility catastrophes. The likelihood function
of equation 7 does not necessarily have to integrate to one, as the likelihood is proportional to
the probability distribution of the data given the parameters, but the normalization constants
ϕi ensure that the probabilities integrate to one over the parameter space (Grasman, Maas,
and Wagenmakers 2010).

If the null hypothesis H0 : b = 0 cannot be rejected at conventional significance levels,
and the parameters a in α = Xa are statistically significant, then the fertility dynamics can be
analyzed solely with traditional fertility models, without the nonlinear dynamics introduced
by a catastrophic fertility shock. The statistical significance of the parameters b in Zb is a way
to empirically test if catastrophes affected the number of pregnancies, since the parameters b
are associated with catastrophic shocks Z that affect the dynamics of fertility through the
control parameter β = Zb in the catastrophe model.

In practice, catastrophic events are not limited to negative shocks, but can also capture
positive effects—when the control parameters are equal to β̂ > 0, α̂ > 0—, such as increases
in fertility rates in a population explosion. Positive control parameters generate catastrophic
distributions with support in the zero-to-infinite positive region (R[0,∞+)), adjacent to the
right tail of the distribution of the number of pregnancies. Understanding the potential
positive and negative impacts of catastrophic events can improve stakeholder coordination,
guide stress testing exercises, and inform policymakers’ decisions on emergency actions.

When the bifurcation parameter is positive (β > 0), catastrophic events Z affecting
pregnancy rates lead to either (i) a sudden and sharp decrease in the number of pregnancies if
β > 0 and α < 0, or (ii) an abrupt increase in pregnancies when β > 0 and α > 0. Through
the parameters α and β, the fertility catastrophe model captures the multifactorial nature of
fertility rate changes, with latent factors reflecting the varying importance of each factor
across different regions and contexts.

Among these factors, previous studies have linked fertility changes to increased female
education, greater labor force participation by women, economic development, rising living
standards, and urbanization. For instance, Hesketh and Xing (2020) highlighted the strong
negative correlation between female education and fertility, suggesting that expanded career
opportunities and delayed childbearing contribute to this relationship. Vayena et al. (2023)
discuss the societal shift toward smaller family preferences due to modernization and evolving
social norms, as well as the rising cost of child-rearing—exacerbated by urbanization and
higher living standards—leading to a contraction in family sizes. Furthermore, Zaghloul
et al. (2021) note that the trend of later marriages shortens the reproductive window,
contributing to lower fertility rates.

Progress toward gender equality can also be seen as a contributing factor, as it grants
women greater autonomy over their reproductive choices, often leading to delayed child-
bearing, which can impact fertility rates due to age-related biological factors (Vayena et
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al. 2023). Both Hesketh and Xing (2020) and Zaghloul et al. (2021) emphasize the increased
availability and use of contraception as a key factor empowering women to control their
fertility. Finally, Zaghloul et al. (2021) highlight improvements in healthcare and reductions
in child mortality rates as additional contributors to the global decline in fertility.

These factors interact in complex ways, with their relative importance varying across
regions and contexts. This highlights the necessity of modeling specific drivers in different
populations through the latent factors embedded in the control parameters α and β of the
fertility catastrophe model.

3. A Cusp Catastrophe-Agent Based Mathematical Model of Teenage Pregnancy
To introduce complexity into an agent-based model (ABM) of teenage pregnancy, we
consider multi-level dynamics incorporating socioeconomic environments, peer-group
pressure through social connections, and feedback mechanisms between these levels. Previous
studies have proposed agent-based models of family planning (O’Brien et al. 2023), the low
fertility trap (Kim et al. 2016), and changes in fertility rates (Singh et al. 2016). Teenage
pregnancy was modeled with ABM before by Barroso and Babanto (2016), but to the best
of our knowledge, no ABM model was combined before with Thom’s nonlinear equations
of morphogenesis.

3.1 Agents and Social Networks
Each agent Ai exists in a structured social network G = (V , E), where:

• V is the set of agents (vertices).
• E is the set of edges representing social connections between agents.

Let Ni denote the neighborhood of agent Ai in the network (i.e., the set of agents
connected to Ai).

In addition to individual-level latent factors such as education, contraceptive use, and
parental guidance, we introduce peer-group pressure through network interactions. Peer
pressure affects behaviors such as contraceptive use or substance abuse.

Define peer influence PIi(t) as a function of the behaviors of agent Ai’s neighbors in the
network. For example, contraceptive use Ci(t) and substance abuse SAbi(t) can be influenced
by the agent’s neighborhood as follows:

PIC
i (t) =

1
|Ni|

∑
j∈Ni

Cj(t)

PISAb
i (t) =

1
|Ni|

∑
j∈Ni

SAbj(t)

Here, PIC
i (t) is the average contraceptive use in agent Ai’s network, and PISAb

i (t) is the
average level of substance abuse in the network.

Agents also exist within a broader socio-economic environment, modeled as a collec-
tion of interconnected communities or regions. Each environment has its own characteristics,
which affect the agents within it.
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Let R denote the set of regions, and each agent Ai belongs to a region Rk ∈ R. Each
region has the following characteristics:

• Regional Deprivation Dk(t): A continuous variable representing the degree of socioe-
conomic hardship in region Rk at time t.
• Regional Violence Vk(t): A binary variable representing the prevalence of violence in

region Rk at time t.
• Regional Education Quality EQk: A continuous variable representing the quality of

education available in region Rk.

These regional factors interact with the individual-level factors and peer-group dynam-
ics.

The probability of pregnancy incorporates both social network effects and regional-level
socio-economic environmental influences. Define the pregnancy probability as:

P(Si(t + 1) = 1 | Xi(t)) =
1

1 + exp

[
– (β0 + β1Ei + β2Ci(t) + β3Pi + β4PIC

i (t)

+γ1Di(t) + γ2Vi(t) + γ3SAbi(t) + γ4PISAb
i (t)

+θ1Dk(t) + θ2Vk(t) + θ3EQk)

]

Where:

• β0: Baseline risk of pregnancy.
• β4,γ4: Coefficients for peer-group influence on contraceptive use and substance abuse.
• θ1, θ2, θ3: Coefficients for regional deprivation, violence, and education quality, respec-

tively.

Thus, the probability of pregnancy depends on:

• Latent factors: Education Ei, contraceptive use Ci(t), and parental guidance Pi.
• Peer influence: PIC

i (t) and PISAb
i (t), representing peer-group behaviors in contraceptive

use and substance abuse.
• Shocks and external factors: Socioeconomic deprivation Di(t), violence Vi(t), and

substance abuse SAbi(t).
• Regional factors: Deprivation Dk(t), violence Vk(t), and education quality EQk.

To reflect feedback mechanisms in peer groups, agent behavior can evolve based on
their neighbors’ behavior. The evolution of contraceptive use and substance abuse follows:

Ci(t + 1) = σ
(
λ1Ci(t) + λ2PIC

i (t) + λ3Pi
)

SAbi(t + 1) = σ
(
ν1SAbi(t) + ν2PISAb

i (t) + ν3Di(t) + ν4Vi(t)
)
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Where σ(x) = 1
1+exp(–x) is the sigmoid function, and λ1, λ2, λ3,ν1,ν2,ν3,ν4 are param-

eters that define the impact of individual, peer, and shock factors on future contraceptive
use and substance abuse.

Each region Rk evolves over time, with factors like deprivation and violence changing
in response to systemic shocks, policy interventions, and feedback from the agent population.
Regional deprivation and violence evolve as follows:

Dk(t + 1) = ρ1Dk(t) + ρ2

 1
|Rk|

∑
i∈Rk

Si(t)

 + ϵD(t)

Vk(t + 1) = τ1Vk(t) + τ2

 1
|Rk|

∑
i∈Rk

SAbi(t)

 + ϵV (t)

Where ϵD(t) and ϵV (t) are noise terms, and ρ2 and τ2 reflect the feedback from the
prevalence of pregnancy and substance abuse in the region to its overall socioeconomic
deprivation and violence.

There are interactions between individual agents’ behavior and their regional environ-
ments. For example, an increase in regional violence may lead to an increase in peer-group
pressure for risky behaviors, further deteriorating regional conditions. These feedback loops
create emergent phenomena at the system level.

To model these interactions:

PISAb
i (t + 1) = σ

η1

 1
|Ni|

∑
j∈Ni

SAbj(t)

 + η2Vk(t)


Where η2 accounts for the influence of regional violence on peer-group behaviors,

linking the regional-level shocks with individual behavior at the social network level.
The model tracks:

• Pregnancy rates: Both at the individual level and across regions.
• Behavioral evolution: How contraceptive use and substance abuse evolve based on

peer-group pressure and regional environments.
• Regional dynamics: Changes in socioeconomic deprivation, violence, and education

quality over time.

This enhanced agent-based model creates a multi-level feedback system where teenage
pregnancy, substance abuse, and other behaviors emerge from interactions between individ-
uals, their peer networks, and the socio-economic environment. The complexity arises from
the network effects, regional dynamics, and feedback loops within and between these levels.

Each agent Ai is part of a social network G, with the following attributes:

• Pregnancy State yi(t): A continuous variable representing the pregnancy state of agent
Ai at time t.
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• Contraceptive Use Ci(t): A binary variable indicating the contraceptive use by agent
Ai at time t.
• Deprivation Di(t): A continuous variable representing the socioeconomic deprivation

of agent Ai.
• Violence Vi(t): A continuous variable representing the exposure to violence.
• Substance Abuse SAbi(t): A binary variable representing substance abuse by agent Ai

at time t.

Cusp Catastrophe Control Parameters
The dynamics of pregnancy evolution are governed by the cusp catastrophe potential
function:

V(y,α,β) =
1
4

y4 –
1
2
αy2 – βy

where:

• y: State variable (pregnancy state) for the agent.
• α: Normal control parameter, affected by contraceptive use.
• β: Catastrophic control parameter, affected by deprivation, violence, and substance

abuse.

Normal Control Parameter αi(t)
The normal control parameter αi(t) evolves based on contraceptive use:

αi(t) = α0 + λ1Ci(t)

where:

• α0 is a baseline value for the normal control.
• λ1 is the influence of contraceptive use on the normal control.

Catastrophic Control Parameter βi(t)
The catastrophic control parameter βi(t) is influenced by socioeconomic deprivation, vio-
lence, and substance abuse:

βi(t) = w1Di(t) + w2Vi(t) + w3SAbi(t)

where w1, w2, w3 are weights reflecting the impact of deprivation, violence, and substance
abuse, respectively.

The pregnancy state yi(t) evolves according to the gradient of the potential function:

dyi(t)
dt

= –
∂V
∂y

= –y3
i + αi(t)yi(t) + βi(t)

Peer-group pressure influences contraceptive use and substance abuse. Let Ni represent
the set of neighbors of agent Ai in the social network G. The influence on contraceptive
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use is modeled as:

Ci(t + 1) = σ

λ2 ·
1

|Ni|

∑
j∈Ni

Cj(t)


where σ(x) is the sigmoid function.

Similarly, substance abuse evolves based on peer influence:

SAbi(t + 1) = σ

λ3 ·
1

|Ni|

∑
j∈Ni

SAbj(t)


The overall simulation evolves by updating the pregnancy state yi(t), contraceptive

use Ci(t), and substance abuse SAbi(t) iteratively. Each agent’s state is influenced by the
catastrophic control parameter βi(t), as well as peer-group pressure from its neighbors.

Figure 2 shows simulations of the Agent-Based Model (ABM) applied to teenage preg-
nancy using the cusp catastrophe model. The model incorporates both non-catastrophic
fertility factors—such as education and contraceptive use—and —catastrophic shocks—
deprivation, violence, and substance abuse. Figure 2 illustrate the state of agents (teenagers)
before and after the simulation, showing who became pregnant under varying socio-
economic conditions.

Figure 2. Simulation of teenage pregnancy in an agent-based model using a cusp catastrophe surface. Left: all
agents (represented as blue markers) are in a non-pregnant state, positioned according to non-catastrophic
fertility factors (X-axis) and catastrophic shocks (Z-axis), such as deprivation and violence. Right: After the
ABM simulation, some agents (red markers) have transitioned into a pregnant state, triggered by an increase
in catastrophic shocks (Z-axis) or decreases in non-catastrophic factors (X-axis).

In the initial conditions (Figure 2 left), all agents (represented by blue markers) are in the
non-pregnant state at the beginning of the simulation. The non-catastrophic fertility factors
(X-axis) includes variables like education quality, parental guidance, and contraceptive use,
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which are generally preventive against teenage pregnancy. The catastrophic shocks (Z-axis),
in turn, reflects negative external factors such as socioeconomic deprivation, violence, and
substance abuse, which are not immediately strong enough to trigger pregnancy in the
initial state. The Y-axis represents the fertility rate, which is initially low or neutral for all
agents, indicating stability in terms of pregnancy prevention.

Figure 2 (left) highlights a relatively stable system where the agents are unlikely to get
pregnant due to a combination of effective contraceptive use and low exposure to catastrophic
factors. According to the catastrophe theory, the agents are positioned on the stable part of
the cusp surface, where minor changes in conditions would not result in significant shifts in
pregnancy status.

However, after the ABM Simulation (Figure 2 right), some teenagers (agents represented
by red markers) transition into the pregnant state. These agents experienced a catastrophic
shift due to the cumulative effects of deprivation, violence, and substance abuse, pushing
them over the cusp. The cusp catastrophe model shows a bifurcation region where small
changes in the control parameters (non-catastrophic factors and catastrophic shocks) can lead
to abrupt and significant changes in the pregnancy state (Y-axis). This explains why some
agents, initially stable, suddenly became pregnant, caused, for example, by peer influence
through social networks. Some agents may have shifted into the pregnant state due to
feedback from their peers, where behaviors such as substance abuse or lack of contraceptive
use spread through social groups, amplifying the impact of catastrophic factors. Violence,
deprivation, and substance abuse play a roles as catastrophic shocks (Z-axis), increasing over
time in the simulation the risk of pregnancy for some agents, leading to a bifurcation where
these individuals cross a critical threshold and become pregnant. The steep decline in the
cusp surface reflects this catastrophic transition.

Figure 2 (right) shows the system transitioning into a more complex and dynamic
state, with some agents falling into pregnancy due to the interaction of catastrophic socio-
economic shocks and latent factors. The cusp catastrophe model explains how these agents
shift from the stable region (non-pregnant) to the unstable region (pregnant) when critical
control parameters (such as deprivation or substance abuse) surpass threshold values.

The cusp catastrophe dynamics effectively illustrates the non-linear nature of fertility dy-
namics. In reality, teenagers may remain in a non-pregnant state despite small fluctuations in
environmental conditions, but once critical factors (like poverty or violence) reach a tipping
point, pregnancy occurs suddenly and unpredictably. This illustrates the catastrophic nature
of teenage pregnancy in vulnerable socioeconomic environments, where a combination of
negative factors can lead to dramatic and often irreversible consequences.

In terms of policy implications, the results highlight the need for targeted interventions
aimed at mitigating catastrophic shocks like socioeconomic deprivation and violence, which,
according to the model, play a critical role in pushing teenagers toward pregnancy. Pre-
ventive measures such as improving access to contraceptives and educational programs, can
help maintain the system in a stable, low-pregnancy state.
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4. Discussion
The fertility catastrophe model, integrating Thom’s nonlinear differential equations of
morphogenesis, offers a fresh perspective on reproductive health dynamics at the macrode-
mographic, mesodemographic, and microdemographic levels.

At the macrodemographic level, the model constructs a three-dimensional catastrophe
surface, mapping the interplay between latent fertility factors (e.g., socioeconomic conditions,
cultural norms) and catastrophic shocks (e.g., economic crises, pandemics). This application
allows for an analysis of how gradual changes in latent factors can combine with sudden
shocks to trigger abrupt declines in global fertility rates. Japan’s declining fertility serves
as an example of the complex interaction between long-term socioeconomic trends and
potential tipping points.

Mesodemographic applications of the model hold promise for exploring fertility dy-
namics within communities or regions. This level bridges the gap between broad national
trends and individual behaviors, offering valuable insights into how fertility patterns vary
across social and sub-national geographical contexts. For instance, the model can investigate
regional variations in fertility rates within a country by considering factors such as socioe-
conomic conditions, cultural norms, and healthcare access. Such analysis can highlight areas
with particularly high or low fertility rates, shedding light on the underlying causes of these
disparities. By examining the interplay between latent factors and potential catastrophic
shocks within specific communities, the model can also guide the development of targeted
reproductive health interventions. These interventions may involve addressing specific risk
factors or strengthening community support systems to mitigate the impact of shocks on
fertility. Additionally, the model can be applied to study the relationship between migration
and fertility, exploring how changes in population composition and social dynamics within
a community influence reproductive behaviors.

At the microdemographic level, the model offers insights into phenomena such as
teenage pregnancy. By mapping behavioral responses under various influences, it identifies
critical points in fertility transitions within specific age groups. The cusp catastrophe-agent
based model of teenage pregnancy shows how latent factors like access to sex education,
parental guidance, and peer influence interact with catastrophic shocks such as socioeco-
nomic deprivation and exposure to violence. It reveals how seemingly minor changes in
socioeconomic conditions or risk factors can lead to disproportionately large changes in
teenage pregnancy rates.

5. Conclusion
The integration of Thom’s nonlinear morphogenesis equations with fertility theory offers
a groundbreaking perspective on reproductive health, providing a more comprehensive
understanding of both stable fertility patterns and abrupt fertility transitions. Insights from
this model can inform more effective public health policies that account for both long-term
socioeconomic trends and potential catastrophic impacts on fertility. Additionally, the model
can help evaluate the effectiveness of local policies and programs aimed at influencing fertility
rates, such as family planning initiatives and economic development efforts. By analyzing
how these policies interact with existing latent factors and potential shocks, policymakers
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can gain a deeper understanding of their impact on reproductive health within specific
communities. The model’s bifurcation set analysis also offers a visual representation of
potential pathways and critical thresholds in fertility dynamics. This analysis illustrates
how minor shifts in underlying socioeconomic and environmental conditions can lead to
significant changes in fertility rates. Identifying these critical points provides policymakers
with valuable insights into potential turning points, allowing them to implement targeted
interventions in reproductive health.
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Appendix 1. Python Code of to replicate the simulations of the Cusp Catastrophe-Agent
Based Mathematical Model of Teenage Pregnancy

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits.mplot3d import Axes3D
4

5 # Parameters for Cusp Catastrophe model
6 alpha_0 = 1.5 # Reduced base alpha to make pregnancy slightly more likely
7 lambda_1 = 0.8 # Impact of contraceptive use
8 w1, w2, w3 = 0.8, 0.6, 0.4 # Weights for deprivation, violence, and substance abuse
9

10 # Time steps and number of agents
11 n_steps = 100
12 n_agents = 100
13

14 # Create neighborhoods with different socio-economic conditions
15 n_neighborhoods = 5
16 # Each neighborhood has [deprivation, violence, education_quality]
17 neighborhoods = np.random.uniform(0, 1, size=(n_neighborhoods, 3))
18

19 # Initialize agents with attributes: pregnancy state, contraceptive use,
20 # deprivation, violence, substance abuse
21 agents = {
22 # Initial pregnancy state (y)
23 'pregnancy_state': np.random.normal(0, 0.1, size=n_agents),
24 # More use contraception
25 'contraceptive_use': np.random.choice([0, 1], size=n_agents, p=[0.7, 0.3]),
26 'deprivation': np.random.uniform(0, 1, size=n_agents), # Deprivation level
27 'violence': np.random.uniform(0, 1, size=n_agents), # Violence level
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28 # Fewer engage in substance abuse
29 'substance_abuse': np.random.choice([0, 1], size=n_agents, p=[0.85, 0.15])
30 }
31

32 # Sigmoid function for logistic update of contraceptive use and substance abuse
33 def sigmoid(x):
34 return 1 / (1 + np.exp(-x))
35

36 # Function to compute the catastrophic control parameter beta
37 def compute_beta(deprivation, violence, substance_abuse):
38 return w1 * deprivation + w2 * violence + w3 * substance_abuse
39

40 # Simulation function
41 def simulate_agents(agents, n_steps):
42 fertility_status = np.zeros(n_agents) # Track final pregnancy status
43

44 for step in range(n_steps):
45 for i in range(n_agents):
46 # Compute normal control parameter alpha
47 alpha_i = alpha_0 + lambda_1 * agents['contraceptive_use'][i]
48

49 # Compute catastrophic control parameter beta
50 beta_i = compute_beta(agents['deprivation'][i],
51 agents['violence'][i],
52 agents['substance_abuse'][i])
53

54 # Update pregnancy state (cusp catastrophe dynamics)
55 dy_dt = -agents['pregnancy_state'][i]**3 + alpha_i *agents['pregnancy_state'][i]
56 + beta_i
57 agents['pregnancy_state'][i] += dy_dt * 0.01 # Time step update
58

59 # Update contraceptive use and substance abuse with some randomness
60 # More likely to use contraception
61 agents['contraceptive_use'][i] = sigmoid(np.random.uniform(0, 1)) > 0.7
62 # Less likely to abuse substances
63 agents['substance_abuse'][i] = sigmoid(np.random.uniform(0, 1)) > 0.85
64

65 # Determine fertility status based on pregnancy state
66 # Adjust threshold for pregnancy
67 fertility_status = np.array([1 if sigmoid(y) > 0.8 else 0 for y in
68 agents['pregnancy_state']])
69

70 return fertility_status
71

72 # Run the simulation
73 initial_fertility_status = np.zeros(n_agents) # Assume no one is pregnant initially
74 final_fertility_status = simulate_agents(agents, n_steps)
75

76 # Cusp catastrophe surface
77 x = np.linspace(-1.5, 1.5, 50) # Non-catastrophic fertility factors
78 z = np.linspace(-1.5, 1.5, 50) # Catastrophic shocks
79 x, z = np.meshgrid(x, z)
80 y = 0.25 * x**4 - 0.5 * x**2 - z
81

82 # Plotting the surface and results
83 fig = plt.figure(figsize=(18, 8))
84

85 # Initial state (Before simulation)
86 ax1 = fig.add_subplot(121, projection='3d')
87

88 # Plot the cusp catastrophe surface
89 ax1.plot_surface(x, z, y, cmap='viridis', alpha=0.7, edgecolor='none')
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90

91 # Overlay the agents' initial states (no pregnancies initially)
92 ax1.scatter(agents['contraceptive_use'],
93 compute_beta(agents['deprivation'],
94 agents['violence'],
95 agents['substance_abuse']),
96 agents['pregnancy_state'],
97 c='blue', label='Not Pregnant', s=50, edgecolor='k')
98

99 ax1.view_init(elev=30, azim=150) # Set the view angle
100 ax1.set_title('Initial Conditions (Before ABM imulation)', fontsize=18)
101 ax1.set_xlabel('Non-catastrophic fertility factors (X)', fontsize=15)
102 ax1.set_ylabel('Catastrophic shocks (Z)', fontsize=15)
103 ax1.set_zlabel('Fertility rate (Y)', fontsize=15)
104 ax1.legend(loc='upper left', fontsize=14, frameon=False)
105

106 # Increase the size of ticks
107 ax1.tick_params(axis='both', which='major', labelsize=13)
108

109 # Final state (After simulation)
110 ax2 = fig.add_subplot(122, projection='3d')
111

112 # Plot the cusp catastrophe surface
113 ax2.plot_surface(x, z, y, cmap='viridis', alpha=0.7, edgecolor='none')
114

115 # Separate the agents by pregnancy status
116 pregnant_agents = final_fertility_status == 1
117 non_pregnant_agents = final_fertility_status == 0
118

119 # Overlay the agents' final states (color-coded by pregnancy status)
120 ax2.scatter(agents['contraceptive_use'][non_pregnant_agents],
121 compute_beta(agents['deprivation'][non_pregnant_agents],
122 agents['violence'][non_pregnant_agents],
123 agents['substance_abuse'][non_pregnant_agents]),
124 agents['pregnancy_state'][non_pregnant_agents],
125 c='blue', label='Not Pregnant', s=50, edgecolor='k')
126

127 ax2.scatter(agents['contraceptive_use'][pregnant_agents],
128 compute_beta(agents['deprivation'][pregnant_agents],
129 agents['violence'][pregnant_agents],
130 agents['substance_abuse'][pregnant_agents]),
131 agents['pregnancy_state'][pregnant_agents],
132 c='red', label='Pregnant', s=50, edgecolor='k')
133

134 ax2.view_init(elev=30, azim=150) # Set the view angle
135 ax2.set_title('Final Conditions (After ABM simulation)', fontsize=18)
136 ax2.set_xlabel('Non-catastrophic fertility factors (X)', fontsize=15)
137 ax2.set_ylabel('Catastrophic shocks (Z)', fontsize=15)
138 ax2.set_zlabel('Fertility rate (Y)', fontsize=15)
139 ax2.legend(loc='upper left', fontsize=14, frameon=False)
140

141 # Increase the size of ticks
142 ax2.tick_params(axis='both', which='major', labelsize=13)
143

144 # Adjust layout to reduce the space between figures
145 plt.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.1, wspace=-0.05)
146

147 # Save the figure at 660 DPI
148 plt.savefig("cusp_catastrophe_simulation.png", dpi=660)
149 plt.show()


